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Abstract 

Hofstadter butterfly’s energy spectrum is discussed both for infinite and finite lattices types. For this 

purpose, a square, a triangular and a honeycomb lattice are accounted for. The set of the nested band 

structures is treated in same more detail.  

Keywords: Hofstadter butterfly, nested bands, Landau levels. 

 

1. Introduction 

The studies, concerning the movement of the electrons under the simultaneous influence of 

a periodic potential and a magnetic field has received much interest [1-11]. Based on Peierls, 

Harper and Wannier work, D. Langbein, analyzing the Landau levels, discovered "the tips of the 

butterfly", in fact a new and profound connection between the admissible energy states and the 

form and size of the lattice pierced by the magnetic field.  Since Landau discovered the electron 

classical energy levels, this investigation instrument evolved, into a complex mathematical 

description. D. Hofstadter analyzed numerically this kind of band spectrum predicted by M. Y. 

Azbel. His work led him to "the most fascinating spectrum in physics" as P. Miller [12] said. If 

Azbel treated as perturbation the periodic potential in a strong magnetic field, Hofstadter 

assumed as perturbation a weak magnetic field in a strong periodic potential. The numerical 

result obtained by D. Hofstadter, presented in Fig.2-left, shows that the spectrum is different 

from Landau energy bands and that the configuration of the energy bands looks like a butterfly. 

Later, it was found that the spectra obtained for another types of lattices, such as triangular and 

honeycomb ones, presented in Fig.4-left and Fig.5-left, have similar pattern. They all have a 

recursive subband structure with nesting effects within the energy bands. Using scattering theory 

and molecular orbitals, finite lattices have also been considered [13-19]. It has been found that 
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the electron energy spectrum for a finite size lattice, the so-called finite butterfly, presented in 

Fig.2-right (square), Fig.4-right (triangular), Fig.5-right (honeycomb), looks like the Hofstadter 

butterfly. The aim of this article is to highlight the pattern resemblances between the infinite and 

finite energy spectra. 

 

2. Electrons in magnetic fields 

Motion of a charged particle in a 2D plane, under a ⊥ magnetic field B
r

, represents the 

Landau two-dimensional problem. Viewed classically, the electrons move in a magnetic field in 

circles in a plane perpendicular zB
rv

||  to the field direction. As their velocity increases, the 

movement takes place on larger circles, its rotational period [20] remaining the same. The 

electron Hamiltonian is ( )
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In the case of a tight-binding approximation [21], and for a quadratic dispersion law 
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 the base of energy levels will be described by the equation given above.  

                                  

Fig.1  Landau fan energy levels. In the corners are the LLL, the thick line represent the 

oscillations of the chemical potential 
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If we take mass as the effective mass 
*m m®  since 
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These discrete levels with the shape of a fan make up the Landau Fan [23], being presented 

in 1.Fig  as broadened Landau levels. In corners, we may see the lowest Landau levels )(LLL , 

while the energy of the lowest states is raised with 
*

cfh  being no longer zero. These energy levels 

are highly degenerated levels, being proportional with the strength of the magnetic field. At 

00KT =  in the absence of any external field, the Fermi energy FE  is equal with the chemical 

potential ),( TBµ thus it is convenient to keep the Fermi energy as a point of reference and to 

establish the chemical potential, as a magnetic field dependence. The large energy gaps between 

high degeneracy of the energy levels determine specific sharp oscillations of the chemical 

potential - thick line Fig.1 crossing the Fermi energy set to zero. The amplitude of the oscillation 

is equal with the distance between two adjacent Landau levels. The location of the chemical 

potential is given by the fraction between (the number of electrons situated in the upper Landau 

levels) and (the number of holes situated in the lower Landau levels). The oscillations tend to 

become null in the point corresponding to the Fermi level set at zero.  

 

3. Electrons in infinite and finite periodic potentials 

In the case of a two-dimensional electronic system characterized by a particular type of 

infinite lattice, in the presence of a homogeneous perpendicular external magnetic field, the 

general hopping Hamiltonian [24] is described by: 
,
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The properties of such systems under a Landau gauge ( )0 0, ,
x

A B=
r

 reveal that they are in 

direct dependence with the quotient 
Q

P
=

Φ

Φ
=

0

β ,[25] as mutual prime integers P  and Q . 

Numerical results show the energy spectrum for an infinite square, triangular and honeycomb 
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types of lattices in Fig.2,3,4,5-left and that the energy bands are short range lines and points. In 

case of finite size system, the molecular wave function ψ  is a linear combination of atomic 

orbitals BsBAsA cc ,1,1 ψψψ += . The Hamiltonian H of the nearly free electron, orbiting 

between two arbitrary atoms, corresponds to the molecular orbitals 
2

2

2
A B

H U U
m

= − ∇ + +
h

,where  

A
U  and 

B
U   are the attraction energies. Treating the structure of the molecular orbitals with the 

help of Debye-Hückel approximation and taking the superposition integral as 0≅= jiijS ψψ , 

the secular equation results, [26] under the determinant form with the solutions 0E E t= ±  and 

hopping integral BA Ht ψψ= . For an arbitrary site ( , )ma na , the only nontrivial matrix 

elements of the Hamiltonian wave function are: 

      , , 1m n m n
H tψ ψ ± =     and    , 1,m n m n

H tψ ψ ± =                  (3) 

                                      
0 , ,, , m p n rm n p rH E δ δψ ψ =                                                         (4) 

Including the magnetic field A
r

 and knowing that each plaquette contribute to the phase 

factor 2 ie π β ,  due to the Aharonov-Bohm effect, [27], the above equation becomes: 

    2
, , 1

im
m n m n

H te π βψ ψ ±
± =                   (5)  

    , 1,m n m n
H tψ ψ ± =                    (6)  

The numerical representations of the energy eigenvalues as function of the magnetic field 

are presented in Fig.5-right, Fig.6-right, Fig.7-right corresponding to the finite square,  triangular 

and honeycomb structure of the finite lattice spectra.  

 

4. Pattern resemblances between the energy spectrum of an infinite and a finite 

lattice in accordance with the Landau fan levels 

What's the difference between a finite and an infinite lattice when we view at a singular 

unit cell from the inner crystal? From a bird's eye view; it seems that there are no major 

differences, except their spatial extension given by the global characteristics. For us, they are 

identical. What seems evident for us is not valuable for the electrons. Under the simultaneous 

influences of neighbors (from the lattice part) and of the external magnetic field, the electrons 

behave differently. They get energy states which are in strong dependence with their 
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characteristics given by the "neighbor's quality". The electrons "feel" if they are placed into an 

infinite size lattice or into a finite size one. The shape and the disposition of the energy bands in 

the spectrum reflect these differences.  

The finite size lattice energy spectrum is completely different from the infinite size energy 

butterfly, due to the fact that the energy bands are sinuous lines for the finite size energy spectra, 

while for the infinite size energy spectra they are points or short-range lines. Band structures are 

highly sensitive to the relation between the geometric parameters of the periodic lattice and the 

magnetic length β , in both cases (of infinite and finite butterflies). These dependences explain 

the appearance of four distinct regions in the spectra: 

Region A : is symmetrical situated by the low and high level of the commensurability 

parameter. It is a zone of highly disordered energy lines in case of finite spectrum and highly 

dotted in case of infinite spectrum. They are the weak filed area. The cyclotron radius is larger 

than that of the finite size lattice. 

                   

Fig.2  The Hofstadter butterfly of a square infinite and finite 400 sites lattice 

 

Region B : in these areas, in the case of weak magnetic fields, the energies are given by 

the effective mass approximation. In case of strong magnetic fields, the energies change very 

rapidly revealing the Landau energies (for the finite butterflies the energy lines change rapidly, 

while for the infinite butterflies these is a region where the dots and the short range lines are 

gathered). All trajectories are limited to the bulk, to the interior, while in the exterior; there is not 

an intersection between them. These regions are the bulk Landau levels. 



 162 

 

Fig.3  The Hofstadter butterfly of a square infinite and finite lattice 

 

Region C : in these regions there are no energy lines or energy points or short range 

energy lines. The density of states vanishes here for lower energies. Around 21=β , the regions 

are symmetrical too. These regions are the magnetic barrier.   

Region D : these regions, are also very intriguing, due to their role in revealing the  major 

differences between the infinite and finite energy spectra. These energies correspond to the gap 

between Landau levels. These regions are the edge state. 

The presented figures we obtained by overlapping the energy diagram revealing the Landau 

fan levels, with the spectrum of finite and infinite lattices as: 

 

Fig.4  The Hofstadter butterfly of a triangular infinite and finite lattice 
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The numerical results show that the energy lines or energy bands are underlined at the 

Landau fan levels. Both types of lattices, determine the apparition of a highly similar pattern 

between allowed energies. The energy levels of the electrons are dense and highly degenerated or 

sparse and non-degenerated, depending on their bounding characteristics. 

 

Fig.5  The Hofstadter butterfly of a honeycomb infinite and finite lattice 

 

The finite size energy spectrum presents lines in the gap zones of the infinite size energy  

spectrum, characteristic to the region D. All these show that energies which are available for  

the infinite spectrum are not accessible for the finite size, and vice-versa, states which are not 

allowed in the infinite spectrum are permitted in the finite lattice. Accessible energies for the 

infinite lattice are highly dense and degenerated. Wide structures of the Landau levels for the 

infinite size lattice are marked by the energy spectrum of the butterfly for the finite size lattice 

too. We may see that the bands gaps from the “infinite butterfly” are completed with energy 

bands, [18], [19], corresponding to the "finite butterfly".  

 

4. Conclusions 

The electrons energy spectrum in the presence of both periodic potential determined by the 

characteristics of the lattice and the external homogenous magnetic field reveals sensitive cases 

of the “butterflies” spectrum appearances. Despite the differences, both butterflies present a 

similar pattern.  From their individual patterns the infinite Hofstadter butterfly and the finite 

butterfly emerges the Landau fan energy levels.  
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