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Abstract 

A spherically symmetric model, proposed several years ago by Byrne and Chaplain for a non-necrotic 

vascularized tumor is reviewed. The nutrient and inhibitor are satisfying reaction-diffusion equations, while 

the tumor radius is determined from a very simple integro-differential equation resulting from a balance of 

cell proliferation and cell death. In principle the coefficients characterizing the model together with the 

boundary and initial conditions can be space and time dependent, but explicit calculations are done when 

these are constant. A special attention was given to the stationary state of the inhibitor-free model. The tumor 

radius is determined graphically from a very simple implicit equation, and it depends only on one parameters 

Λ . Stationary states exist if ( ),1/3.critΛ∈Λ . The model was extended assuming a space dependence (two 

regions, one near the surface and the rest of the tumor) for a concentration Bc  of the nutrient in the 

vasculature. The implicit relation determining the radius is found.  

 

 

 

The carcinogenesis is a very complex, multistage phenomenon involving the space and time 

evolution of a large number of variables, each with specific activity and strongly interacting 

between them. Therefore the mathematical modelling of a tumor evolution is a highly 

challenging problem at the frontier of applied mathematics. In each stage specific variables are 

characterizing the tumor evolution and specific mathematical models are used. Although this 

separation in several stages is only partial true, the mechanisms working in a previous stage being 

present also in the next ones, it is a convenient way to tackle the problem. As mentioned before, 

this approach allows to identify the main processes which are considered to be characteristic to 

the respective stage, and to introduce proper variables that describe them. 

It is generally accepted that cancer results from the accumulation of mutations in the genes 

controlling the birth and death of cells. Therefore the first stage is a sub-cellular one and this 
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accumulation process is usually described as a somatic evolution. It can be discussed 

mathematically using the evolutionary game theory Error! Reference source not found.-

Error! Reference source not found.. In the second stage, which can be called the cellular stage, 

the attention is concentrated on the proliferation of tumor cells in competition with the immune 

system, resulting either the inhibition and depression of the immune system, or the destruction of 

the tumor cells. One write kinetic equations for the distribution functions of different populations 

(tumor cells, environmental cells, immune cells), depending on time and on a scalar variable 

describing the ``ability'' of each population to perform its purpose (proliferation for tumor cells, 

feeding for the environmental cells, defense for the immune ones). The key point is to properly 

describe the interaction between these populations. Such models have been considered by several 

authors Error! Reference source not found.-Error! Reference source not found.. 

The last stage is a macroscopic one, when the tumor cells are constituted into a macroscopic 

object of more or less spherical form. Over the last 30 years many such models appeared and 

have been discussed Error! Reference source not found.-Error! Reference source not found.. 

Recently a model with three types of cancerous cells, proliferating, quiescent and dead cells, was 

discussed by Friedman and coworkers Error! Reference source not found. - 

Error! Reference source not found.. The densities of each type of cells are satisfying a coupled 

set of reaction-diffusion equations with coefficients depending on the nutrient concentration. The 

nutrient concentration satisfies a diffusion equation and consequently the problem becomes 

nonlinear. The situation is even more complicated because the tumor boundary changes in time. 

In certain conditions, for spherically symmetric models a unique stationary solution exists. 

In this paper we shall consider the simplest situation of a spherically symmetric model of a 

non necrotic tumor. It was proposed by Byrne and Chaplain 

Error! Reference source not found. and exact results were obtained by Friedman and Reitich 

Error! Reference source not found.. 

One considers a spherically symmetric tumor of radius )(tR . Two reaction-diffusion 

equations are describing the distribution of the external supplied nutrient )(tc , and the inhibitor, 

)(tβ , and an integro-differential equation governs the evolution of the tumor's radius. Denoting 

by ),( tr  the spatial and temporal variables, the equation satisfied by the nutrient concentration is 

given by  



 110 

  ),()(= 1

2

2

1 βλ cgccc
r

c
rr

r

D

t

c
B −−−Γ+









∂

∂
∂∂

∂

∂
 (1) 

 The first term in the right-hand side describes the diffusion of the nutrient in the tumor 

region, while the second describes the nourishment by blood-tissue transfer, and his presence 

stems from angiogenesis (the tumor generates its own blood supply) 

Error! Reference source not found.. Here 1D  is the diffusion constant (assumed constant), Bc  

is the nutrient concentration in the vasculature and Γ  the rate of blood-tissue transfer per unit 

length. For 0=Γ  we get the avascular case. The nutrient is consumed at the rate cλ . The 

presence of the inhibitor β  acts as second sink for the nutrient and it is described by the term 

),(1 βcg  in the r.h.s. of (Error! Reference source not found.). In this model the tumor 

comprises only one type of proliferating cells, and due to the fact that their density is constant (no 

constant densities exist in the model with more species of cancerous cells), they can be 

eliminated from discussion. The only factors which influence the tumor growth are the supply of 

nutrient and inhibitor. Although in the model one assumes constant values for λ,,,1 BcD Γ , this 

assumption can be enlarged by considering reasonable and simple spatially varying expressions 

for these coefficients. Actually we shall consider also a case when Bc  in the proximity of the 

tumor surface is greater than the value inside the tumor, reflecting a greater tumor angiogenetic 

factor near the surface. The model describes a non-necrotic tumor, but can be used to study also 

the beginning of the necrotic case, assuming that this new situation is starting when the nutrient 

concentration decreases below a certain critical value Nc  (the cancerous cells die by starvation 

when they are not properly nourished). 

As concerns the inhibitor, it satisfies a similar reaction-diffusion equation  
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 where 2D  is the diffusion constant (usually 12 < DD ) and all the sinks and sources of 

inhibitor are included for simplicity in the single term ),(2 βcg  (its form depends on the scenario 

by which the inhibitor is delivered to the tumor). 

The rate of growth of the tumor depends on the number of proliferating cells inside it, 

whose density is a function of nutrient and inhibitor concentration. In this case of a single type of 

active cells inside the tumor, it is necessary to give an expression for the cell proliferating rate. 
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Denoting this rate by ),( βcS , the time evolution of the tumor volume (radius) is given by  

  ( ) drrcSR
dt

d

tumor

23 ),(4=34 βππ ∫  
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 Several expressions for ),( βcS  can be used. Any of them have to express the balance 

between the creation and the death of cells. In the absence of inhibitors the simplest form is  

  )(=)( ccscS −  (4) 

 where s  and c  are constants. Here sc  is the birth rate, proportional with the nutrient 

concentration , and cs  is the constant death rate of the cells inside the tumor. Another expression 

uses a second order death rate 
c

sc

ˆ

2

 and the following logistic expression for ),( βcS  is obtained  
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 In (Error! Reference source not found.) the situation cc <  is excluded (in 

(Error! Reference source not found.) cc ˆ> ) as being physically unrealistic. Assuming that the 

inhibitor acts in a similar way in reducing the proliferation rate, the expression 

(Error! Reference source not found.) can be completed with a similar linear term in β   
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 or  

  βββ ˆ)11(=),( +− ccscS  (7) 

 Similar extensions can be considered starting from the logistic expression 

(Error! Reference source not found.). In (Error! Reference source not found.) the situation 

ββ ˆ>  is excluded as being unrealistic. 

We have to prescribe the boundary and the initial conditions. The boundary conditions are  

  0=
)0,=(

=
)0,=(

r

tr

r

trc

∂

∂

∂

∂ β
 (8) 

  )(=)),((),(=)),(( tttRtcttRc RR ββ  



 112 

where )(tcR  and )(tRβ  are the nutrient and the inhibitor concentration at the tumor surface 

(usually they are taken constants, but can be also considered as depending on time in a given 

way), while the initial conditions are given by  

  )(=,0)(),(=,0)( 00 rrrcrc ββ  (9) 

  0=(0) RR  

Here 000 ),(),( Rrrc β  are known. 

The last step is to give functional forms for the interaction terms 1g  and 2g . Very few 

experimental informations about how an inhibitor operates, are known, and insufficient to 

determine these expressions. Therefore several mechanisms can be considered, namely:  

     • inhibitor free case:  

  );(=0,==0, 21 ccsSgg −≡β  (10) 

     • inhibitor affects cell proliferation rate, but not the nutrient concentration  
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     • inhibitor affects nutrient concentration but not the proliferation rate  

  )(=,=,= 2211 ccsSgg −βγβγ  (12) 

     • inhibitor affects both nutrient concentration and the cell proliferation rate  

  ( )βββγβγ ˆ1)(=,=,= 2211 −− ccsSgg  (13) 

These are very simple expressions depending only on the inhibitor concentration β , but 

other more complicated expressions can be considered. 

In the process of tumor growth two time-scales can be identified. The first is related to the 

nutrient diffusion inside the tumor. We can define a characteristic diffusion time DLD

2Çkτ , where 

L  is a typical length scale and D  a typical diffusion coefficient. With cm10Çk 2−L  and 

126 scm10Çk −−D , we have minute1ÇkDτ . The second is related to the growth rate of the tumor 

which is of order 0.5  mm/day. Therefore the ratio T/= 0τε , where T  is a characteristic tumor-

doubling time, 1ÇkT  day, is a small quantity. It is convenient to introduce space and time 

dimensionless variables  

  tTtrRr =,= 0  (14) 
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 We shall rescale the dependent variables and the parameters  
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Here Σ  and B  are typical nutrient and inhibitor concentrations(as the maximum values 

inside the tumor 1<<0 r ). Dropping the bars the equations governing the tumor growth are  
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subjected to the following boundary and initial conditions  
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 Numerical solutions have been obtained assuming different inhibitory mechanisms 

Error! Reference source not found.. The free-inhibitor simulations indicate the existence of a 

non-trivial stationary state. Further on we shall discuss only this situation 

Error! Reference source not found.,Error! Reference source not found.. In this case 

),(=),(0, ccscS −≡ ββ  and the set of equations (Error! Reference source not found.), 

(Error! Reference source not found.) becomes  
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 Here we assume a constant nutrient concentration at the tumor boundary, and a constant Bc  

value inside the tumor. Denoting  
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 From the last eq (Error! Reference source not found.), as 0/ ≡dtdR , we obtain  
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 the value of the tumor radius is determined by the implicit equation  
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 In order to have a positive Λ , the coefficient Bc  has to satisfy the inequality  

  RB ccc <<
λ+Γ
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 the last inequality being a reasonable assumption. Then from the definition 

(Error! Reference source not found.) of Λ , we have  
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  13<<0 Λ  (26) 

 and in this case eq. (Error! Reference source not found.) has a unique solution which can 

be obtained graphically Error! Reference source not found.. As mentioned previously a 

necrotic stage starts to develop when the nutrient concentration lowers below a certain value Nc . 

As this case happens for 0→r , using (Error! Reference source not found.) and 

(Error! Reference source not found.) another restriction results, namely  
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 where η  is the solution of (Error! Reference source not found.). 

Now we shall extend the present model relaxing the assumption of a constant Bc  inside the 

tumor. We shall assume that near the tumor boundary in a layer of thickness δ , Bc  is greater 

than in the rest of the tumor  

  




−

−∆+

δ

δ

Rr

RcrRc
rc

BB

B
<

,<<),(1
=)(  (28) 

 This is corresponding to a greater tumor angiogenesis factor in the outer region of the 

tumor. The solution of (Error! Reference source not found.) in the first region δ−Rr <  is of 

the form  
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 Here we used only the condition 0=
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dr
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, and K  is an integration constant to be 

determined from the matching conditions at the boundary between the two regions. In the second 

region RrR <<)(1 δ− , the solution of (Error! Reference source not found.) is  
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 with 1K  and 2K  two integration constants to be determined from the boundary condition 

RcRc =)(  and the matching conditions at the boundary between the two regions. The first 

condition gives  

  ( )λλ

λ
+Γ+Γ− +∆+

+Γ

Γ
− RRB

R KKR
c

c ee12=)(1 21  (31) 



 116 

 From the continuity of the solution )(rc  and its derivative 
dr

rdc )(
 at the point δ−Rr =  

one obtains  

  ∆+ΓΓ
−

−+
−

+−
+Γ−+Γ−−

λ
δδ

λδλδ

B

RR

c
R

KK
R

KK =
e

)12(
e

)12(
)(

2

)(

1  (32) 

 and  

  =
e

)12(
e

)12(
)(

2

)(

1
δ

λ
δ

λ
λδλδ

−
+Γ−+

−
+Γ+

+Γ−+Γ−−

R
KK

R
KK

RR

 (33) 

  

  
2

)(

22

)(

1
)(

e
)12(

)(

e
)12(=

δ
λ

δ

λδλδ

−
+Γ−+

−
+−

+Γ−−+Γ−−

R
KK

R
KK

RR

 

The equations (Error! Reference source not found.) - ((33)) represent a linear system 

from which constants 1, KK  and 2K  are completely determined. Using the solutions 

(Error! Reference source not found.) and (Error! Reference source not found.), the relation 

(Error! Reference source not found.) becomes  
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The integrals in the r.h.s of (Error! Reference source not found.) are straightforward and 

the following relation results  
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With the constants 21,, KKK  determined from (Error! Reference source not found.)-
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((33)), the equation (Error! Reference source not found.) is an implicit relation giving the 

tumor radius (and the conditions which have to be satisfied by the constants BR ccc ,, , Γ , λ , ∆ , 

δ  in order to have a stationary solution). The analysis is much more complex and work on this 

direction is in progress. 

The model besides its simplicity has the merit to introduce in a simple way a feeding 

mechanism by a blood-tissue transfer, not only via diffusion. Also the influence of inhibitors is 

considered in a very simple and natural way. The reaction-diffusion equations governing the 

space and time evolution of the nutrient and inhibitor and the equation giving the rate of growth 

of the spherically symmetric tumor are simple enough and numerical simulations can be done. A 

special attention was given to the stationary state, when an analytical solution is easily found for 

an inhibitor free model. A free- inhibitor model with a nutrient concentration Bc  in the 

vasculature near the surface different from the value inside the tumor was also considered. This 

case arises from a higher tumor angiogenesis factor at the surface of an aggressive tumor. More 

improved models will be considered in the future. 
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