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Abstract 

The paper intends to present a concrete study of the existence of generalized symmetries for the 1+1 

dimensional version of the integrable Calabi flow equation, obtained by uni-directionalization. Some 

numerical computations was made in order to obtain the explicit form of the symmetries. 
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 1. Introduction 

Point symmetries and generalized symmetries play an important role in the mathematical 

analysis of differential equations (Ibragimov [1], Blumann [2], Olver [3]). Originating with the 

work of Lie, symmetry group methods and their recent generalizations have proved useful in 

understanding conservation laws, in constructing exact solutions, and in establishing complete 

integrability of certain systems of differential equations. 

In recent years considerable attention has been devoted to applications of symmetry group 

methods to a large variety of two or three order non-linear partial differential equations, but 

relatively few complete results have been obtained for the fourth order evolution equations. 

In this paper we will give a  complete characterization of all arbitrary-order generalized 

symmetries for the version of Calabi flow equation in 1+1 dimensions, as a preliminary step to 

study the Calabi flow in 2+1 dimensions. After a short presentation of the problem of finding 

generalized symmetries for a given evolution equation in the next, the Section 3 is dedicated to 
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introduction of the equivalent of Calabi flow equation in 1+1 dimension and the last part of the 

paper present our study about the symmetries of this one. 

 

 2. Generalized symmetries for evolution equations 

The symmetries encountered in field theory are usually of the type commonly referred to as 

point, or classical, symmetries. A point symmetry of a system of differential equations is a 1-

parameter group of transformations of the underlying space of independent and dependent 

variables that carries any solution of the equations to another solution. For differential equations 

derived from a variational principle, the point symmetries which preserve the action lead to 

conservation laws. However, not all conservation laws stem from point symmetries. To account 

for all conservation laws in Lagrangian field theory one must enlarge the notion of symmetry to 

include generalized symmetries. 

A  generalized symmetry is an infinitesimal transformation, constructed locally from the 

independent variables, the dependent variables, and the  derivatives of the dependent variables, 

that carries solutions of the differential equations to nearby solutions. The importance of 

generalized symmetries is underlined by their role in completely integrable systems of non-linear 

differential equations. In particular, when a system of differential equations is integrable, it 

generally admits ``hight orders'' generalized symmetries Olver [3], Fokas [4]. 

Consider the n-order evolution equation: 

  ,0=),,,,,(= )(n

xxt uuuxtKu L−∆  (1) 

 where tu , xu  means the time, respectively space, derivative of the dependent variable 

),(= xtuu , and )(n

xu  is the n-order derivative.  

The classical symmetries analysis consider the one-parameter Lie group of infinitesimal 

transformations in ( utx ,, ) given by  
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where ε  is the group parameter. Then one requires that this transformation leaves invariant 

the set  

  0}=:),({ ∆≡∆ txuS  (3) 
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 of solutions of (1). This yields an overdetermined linear system of equations for the 

infinitesimals ),,(),,,(),,,( utxutxutx φτξ . The associated Lie algebra is realised by vector fields 

of the form  

  .),,(),,(),,(= utx utxutxutxv ∂+∂+∂ φτξ  (4) 

 Having determined the infinitesimals, the symmetry variables are found by solving the 

characteristic equation  

  ),,,(=),,(=),,( utxduutxdtutxdx φτξ  (5) 

 which is equivalent to solving the system  

  0.=),,(),,(),,( utxuutxuutx tx φτξψ −+≡  (6) 

 The set ∆S  is invariant under the transformation (Error! Reference source not found.) 

provided that  

  0=|)(p 0

)(

≡∆∆vr
n  (7) 

 where vr n)(p  is the n-th prolongation of the vector field (4), which is given explicitly in terms of 

τξ ,  and φ  in Ch. 5, Olver [3]. 

The  generalized symmetries carried out from the same considerations, but considering all 

the solutions of the equation (7), depending on t , x , u , and the derivatives of u . The maximum 

order of derivatives of u  give the so-called  order of the generalized (infinitesimal) symmetry:  

  .),,,,(),,,,(),,,,(= uxtxxx uutxuutxuutxv ∂+∂+∂ LLL φτξ  

In practice, the equation (7) is very difficult to solve for an initial equation of order highest 

that two, due to the large numbers of terms involved in the expression of the prolongation. An 

alternate version of the symmetries equation can be obtained by changing the form of the 

infinitesimal symmetry utxv ∂+∂+∂ φτξ=  to the equivalent  evolutionary form  

  ,),,,,(= uxQ uuxtQv ∂L  

where tx uuQ τξφ −−=  is the characteristic of the generalized vector field v . 

The symmetries equation (7) for the initial equation ][= uKut  rewrite as:  

  0,=)( QKDt
′−  (8) 

 where tD  is the total time derivative (the evolutionary derivative)  
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and the prime means the Frechet derivative  
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The simplest usual form of the symmetry condition equation is:  

  ).(=)( QKKQQt ′′+∂  (9) 

 In practice, one choose an particular order m  for the characteristic  

  ),...,,,,(= )(m

xx uuuxtQQ  

and one search all the solution Q  of the equation (Error! Reference source not found.) by 

identifying the coefficients of all the corresponding monoms expressed in u  and his x -

derivatives. 

 

 3. The 1+1 dimensional version of Calabi flow 

The Calabi flow was defined for n2 -dimensional K a&& hler manifolds admitting a K a&& hler 

metric g , which is locally expressible in the form  

  , 2=2 ba

ba
zddzgds  

using a system of holomorphic coordinates az  and their complex conjugates az  with 

na ,1,2,= L . The general form of Calabi flow equation is (Calabi [5],[6], Bakas [7]):  

   = 2 ba

bat zzRg ∂∂∂∂  (10) 

 where 
ba

ba
RgR =  is the Ricci Scalar curvature. 

The equation (10) is a parabolic equation for the components of the metric, but it is fourth 

order in the variables z  and z . Critical points of the flow are called  extremal metrics and they 

encompass constant curvature metrics, if they exist on a given K a&& hler manifold. In this respect, 

the Calabi flow is used as a tool for studying the conditions for Einstein-K a&& hler metrics in 

geometry, and in conjunction with their possible obstructions. 

In order to obtain a version of the Calabi flow in 1+1 dimensions, we start from the Bakas 

([7]) local expression of Calabi flow in 2+1 dimensions, for conformally flat coordinates  

  : 2= );,(2

t zdzdeds
tzzΦ  
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is 

  , = ∆∆Φ−Φ∂ t  (11) 

 where the symbol ∆  is the Laplace-Beltrami operator ∂∂∆ Φ−
e=  for the K a&& hler metric 

);,(= tzzzz eg Φ . 

Note that this equation can be defined on any Riemann surface, not only on a K a&& hler 

manifold. With the transformation Φ
eu = , the equation (11) become:  

   ))(ln
1

(= u
u

ut ∂∂∂−∂∂  (12) 

 Introducing a linear combination of the variables z  and z  as a new independent variable, 

by uni-directionalization one obtain an 1+1 dimensional (reduced) equation. For example, if 

xzz =+ , the equation (12) rewrite as:  

  , ))(ln
1

(= u
u

u xxxxt ∂−∂∂  (13) 

 or, explicitly:  
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 witch we will use as an unidimensional version of Calabi flow in the next. 

 

 4. The Symmetries of Calabi flow in 1+1 dimensions 

We look for the generalized symmetries uQ uQv ∂][=  of the equation (14)  
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The symmetry equation (9) write as:  
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 for the m  order evolutionary generalized symmetry Qv . We will search for the solutions of (15) 

supposing that the order of ][uQ  (the maximum order of derivatives of u  involved in the 

expression of Q ) is successively 0, 1, 2,... 

 At order 0 , let's take ),,(= uxtQQ . The equation (15) is verified if and only if  
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for all the solutions u  of the equation (14), from where is simple to conclude that 0≡Q . 

 At order 1, consider ),,,(= xuuxtQQ . The symmetries determining equation (15) imply a 

system of 15 differential equations in Q , who can be reduced at  
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for all the solutions u  of the equation (14). The first and second equations give 

xuuxguxfQ ),(),( +≡ , under the supplementary conditions (derived from the others equations):  

  0=,0=,0= f
u

g

x

g

∂

∂

∂

∂
 

with the solution auxg =),( , where s  is an arbitrary constant. One obtain the generalized 

evolutionary symmetry:  

  ,=1 uxauv ∂  (16) 

 corresponding to the classical infinitesimal symmetry xav ∂=1 , witch is a simple translation 

along the x -axis. For order 2 , if we consider ),,,,(= xxx uuuxtQQ , the symmetries equation (15) 

imply an over-determined system of differential equations for Q  that begin with  

  ,0=
xxu

Q

∂

∂
 

so we have no symmetry of order two. The same result is obtained if we look for the generalized 

symmetries of order 3 . For order 4 , if we consider ),,,,,,(= xxxxxxxxxx uuuuuxtQQ , the 

symmetries equation (15) determine a system of 245 differential equation involving the partial 

derivatives of Q . A more simple way to obtain the fourth order evolutionary symmetries is to 

split Q  into tree functions:  

  tx uuuuuuQ ][][][=][ τξφ −−  

and to solve (15) for φ , ξ  and τ . Using MAPLE 9 to reduce the system, we have obtained the 

conditions:  
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 with the solution  

  tcbxa 4=,= ++ τξ  (18) 

 where a , b  and c  are arbitrary constants. The corresponding generalized evolutionary 

symmetries are utxQ ubtcubxav ∂+++ ])4()[(= , representing the group at tree parameters of 

classical infinitesimal symmetries:  

  ],.)4()[(= tx btcbxav ∂++∂+−  (19) 

 The group (19) is spanned by  
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 witch represent the space and time translation, respectively a scaling transformation 

( ),(),( 4txtx αα→ ). 

 If now we consider ),...,,,,(= )(m

xx uuuxtQQ  with 5≥m , the equation (15):  
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so, by induction, we do not have generalized evolutionary symmetries of order greater that 4. 

 Note that the studied equation  

  , ))(ln
1

(= u
u

u xxxxt ∂−∂  

admits a simple Lax representation ],[= LALt  using  
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 where γ  is an arbitrary parameter. (The compatibility condition txxt ψψ =  become the (FDE) ). 

By the other hand, the 1+1 dimensional version of Calabi flow that we studied here is a 

simple uni-directionalization of the original Calabi flow equation, with is integrable (Bakas [7]) 

and possess a zero curvature representation and an (algebraic) infinite hierarchy of hight order 

integrable equations, so the integrability of the equation  

   ))(ln
1

(= u
u

u xxxxt ∂−∂  

can be strongly supposed. The absence of high order generalized symmetries for this equation is a 

surprising result in this context. 

 

 5. Conclusions and future works 

In this paper we proved that the group of all arbitrary-order generalized symmetries for the 

uni-directionalization of Calabi flow equation in 1+1 dimensions:  

   ))(ln
1

(= u
u

u xxxxt ∂−∂  

is spanned by x∂  t∂  and tx tx ∂+∂ 3 , witch are geometrical symmetries. A natural extension of 

this work to the study of Calabi flow in 2+1 dimensions will be treated in a future. 

Due to the absence of hight order symmetries for this 1+1 dimensional version of an 

integrable equation, a study of the existence of some potential (hidden) symmetries, may be non-

local, is clearly necessary. 
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