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Abstract 

We write the expression for the Bel-Robinson tensor defined in three different ways for a Bianchi type-I 

cosmological model. In doing so we use the orthonormal basis and compare the results obtained with those for 

ordinary coordinate basis. 
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1. Introduction 

The search for a well-posed definition of local energy-momentum tensor in gravity led Bel 

[1,2,3] and independently Robinson [4] to construct a four-index tensor for the gravitational field 

in vacuum. The properties of the now famous Bel-Robinson (BR) tensor are similar to the 

traditional energy-momentum tensor and following Senovilla [5,6] can be formulated as follows: 

(i) it possesses a positive-definite time-like component and a "causal" momentum vector; (ii) its 

divergence vanishes (in vacuum); (iii) the tensor is zero if and only if the curvature of the 

spacetime vanishes; (iv) it has positivity property similar to the electromagnetic one; and some 

others. Construction of BR and the study of its properties were widely considered by a number of 

authors, e.g., Deser  et. al. [7,8], Teyssandier [9], Senovilla [5], Bergqvist [10], Andersson [11], 

Wingbrant [12], Choquet-Bruhat  et. al.  [13] etc. 

BR energy in a cosmological setting represents an important tool to investigate the nature of 

singularities in cosmologies. We mention the relation between geodesic completeness, the 

existence of closed trapped surfaces and the BR energy tensor[14]. Therefore, in our view it is 

interesting to consider the BR within the scope of some concrete metric. 
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The present and early stages of our Universe are described with a good approximation by 

spatially homogeneous and isotropic Friedman-Robertson-Walker (FRW) models. This isotropy 

of our Universe represents a puzzle to cosmologists. However, the large scale matter distribution 

in the observable Universe does not exhibit a high degree of homogeneity. In recent time there 

was a number of space investigations which detect anisotropies in Universe. There are theoretical 

arguments that support the existence of an anisotropic phase in the early Universe that 

approaches later on an isotropic phase. For example Zel'dovich [15] proposed that the Universe 

may have started anisotropic, but rapidly isotropized as a result of quantum effects. 

A Bianchi type I Universe (BI) is a straightforward generalization of the flat Robertson-

Walker (RW) Universe. It represents one of the simples models of an anisotropic Universe that 

describes a homogeneous and spatially flat Universe. Unlike the RW Universe which has the 

same scale factor for each of the three spatial directions, a BI Universe has a different scale factor 

in each direction, thereby introducing an anisotropy to the system. 

In a recent paper [16] we studied the BR within the framework of BI Universe using two 

different definitions. In the paper [17] the analysis was extended for some other definitions and 

investigated the dominant energy property (DEP) and dominant super-energy property (DSEP) 

within this model. 

 

2. Bel-Robinson tensors: definition and it's general properties 

BR tensor first appeared in the endless search for a covariant version of gravitational 

energy. In general relativity, the energetic content of an electromagnetic field propagating in a 

region free of charge is described by the well-known symmetric trace-less tensor  
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 where αβF  is the electromagnetic field tensor. This tensor satisfies:  

  0=;e
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 as a consequence of Maxwell equations with 0.=µj  The tensor αβ
lTe  enables us to define a 

local density of electromagnetic energy as measured by an observer moving with the unit 4-

velocity u :  
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 It follows from (1) that the energy density is positive definite for any time-like vector u . 

Within the scope of general relativity, however, it is well known that the concept of local 

energy density is meaningless for a gravitational field. To overcome this difficulty one is led to 

introduce the notion of super-energy tensor constructed with the curvature tensor µναβR . The first 

example of such a tensor was exhibited by Bel [1], that was further generalized to the case of an 

arbitrary gravitational field [2]. Note that a similar tensor was also introduced by Robinson [4]. 

This tensor is now commonly know as the BR tensor as well. Since we are going to compare 

some distinct definition of BR in this paper, before defining them let us see what kind of 

properties they should have. In general, the BR tensor has the following symmetry properties:  
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 The symmetry property leads to the fact that that in n -dimensional case there are 

2]/81)(1)[( +++ nnnn  independent components of the BR tensor. In case of 4=n  out of 256 

components only 55 are linearly independent. 

In literature there are a few definitions of BR. Here we mention only three. 

 I. By analogy with the tensor (1) which may be written as  

  ,= α
νµα

α
νµαµν FFFFT ∗∗+  (7) 

 the BR tensor is defined as [7]:  

  .= ρνσβ
σρ
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σρ
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 Here the dual curvature is .(1/2) αβ
λσ

µν
αβ

µν
λσ ε RR ≡∗  It should be noted that this definition 

is adequate only in 4 dimensions and in vacuum. Otherwise this tensor cannot satisfy the DEP 

[18] and therefore this expression should not be used in other dimensions or in non-Ricci-flat 

spacetimes. 

Using the definition of dual curvature, from (8) we find  
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The properties (4) and (5) follow immediately from (8) thanks to the symmetry property of 

the Riemann tensor. The property (6) is straightforward from (8), but for (9) it requires  
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 II. The restriction that arises above is due to the fact that in defining the BR tensor we used 

the dual term with the duality operator acting on the left pair only. To avoid this restrictions the 

BR tensor can be defined by [9,19] 
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 where the duality operator acts on the left or on the right pair of indices according to its 

position. Nowadays this is known as the Bel tensor and was introduced by Bel [2] in a slightly 

different form. 

 III. Here we give another definition that gives rise to BR tensor, that is trace-less and 

totally symmetric. It can be achieved by constructing BR by means of Weyl tensor [10,20]. 

  .= ρνσβ
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αµρνσβ

σρ
αµµναβ CCCCB ∗∗+  (12) 

 It can be shown that this BR is totally symmetric, i.e.,  

  ,= )(ijklijkl BB  (13) 

 Moreover, the BR defined through Weyl tensor is trace-free, i.e.,  
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Let us study this case in detail. Using the properties of Levi-Civita tensor we first rewrite 

(12) in the form  
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In what follows we write the expressions for the components of the BR tensor for a BI 

metric. 

 

 3. BR in BI cosmology 

 BI cosmological model is the simplest model of an anisotropic cosmology. For it's 

simplicity and many other outstanding properties BI becomes one of the most investigated 

cosmological models in recent time. For a detailed review of this metric one can consult [21]. 

We write the BI metric in the form:  
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 where ia  are the functions of t  only. In order to construct BR tensor first we have to find 

the Riemann and Weyl tensor for the BI metric. 



 91 

The nontrivial components of the Riemann tensor in an orthonormal basis take the form:  
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 For the nontrivial components of the Weyl tensor in an orthonormal basis we find:  
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 Once we have the components of Riemann and Weyl tensor, we can now write the 

components for the BR. In what follows we write the nontrivial components of the BR tensor. In 

doing so we use all the three definitions mentioned above. Here we note that the subscripts kji ,,  

run from 1 to 3  and they are different, i.e., 1,2,3,=,, kji  and kji ≠≠ . 

 I. From (9) we now write 
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 Comparing these expressions with those of [17] one sees, that the use of an orthonormal 

basis in this case does not simplify them. As in that case, here too we get the following 

restrictions on metric functions, that reads  
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It was shown in [17] that that if one defines BR tensor as (8) or (9), it correspond to the 

Einstein equations with the source field given by a vacuum. 

 II. Let us write the nontrivial components of BR defined as (11).  
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 Comparing those expression with those given in [17] we find that the new basis simplifies 

our task. In this case we have iijjkk BB −=00  which was not the case in ordinary basis. 

 III. Let us now write the components of BR defined in (12).  
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 In this case though the expressions for the components of BR does not undergo any radical 

changes, as it was shown in[17], the dominant property of the BR now fulfills. 

 

4. Conclusions and further questions 

In this report we have investigated the Bel-Robinson tensor for the BI spacetime using the 

orthonormal basis. Comparing the expressions with those found in [17] we see at least for two 
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cases the new basis significantly simplifies the expression and gives clear idea about the 

dominant property of BR. 

The averaging problem in general relativity is an important issue with many implications in 

cosmology and in the understanding of the recent expansion history of the visible Universe. We 

must remind that the averaging methods are far from unique and the problem of defining a 

suitable averaging scheme remains open [22]. The study of the effects of spatial anisotropies on 

cosmologies by looking at the average properties of BI models could contribute to our 

understanding of the recent expansion history of the Universe. 

As it is known, in curved spacetimes, there is an ambiguity in the construction of a vacuum 

state, Fock space for quantum fields. In some cases, there may exist coordinates associated with 

the Killing vectors in analogy with the rectangular coordinates in Minkowski space. However, 

even if such privileged coordinates do exist, there are problems in the quantization of the fields 

[23]. That is the case of the quantum fields in BI spacetimes and the Bogolubov coefficients are 

worthy of being evaluated. 

In conclusion the BI cosmology models are of interest deserving further studies. 
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