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Abstract 

Starting from the discretization of the electric charge in terms of integer multiples of an elementary charge 

leads to the onset of non-Hermitian but conjugated flux operators. Such operators get established in terms of 

left- and right-hand discrete derivatives. The Hermitian kinetic energy term can then be readily established 

by resorting to the product of flux operators just referred to above. Dealing with the LC-circuit amounts to 

consider the influence of quadratic and linear terms in a time dependent discrete Schrödinger-equation. 

Such terms are responsible for the magnetic flux and the time-dependent electric field, respectively. One 

shows that the electric charge discretization can also be readily described by accounting, in general, for 

integer dependent functions instead of the integer referred to above.  
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1. Introduction 

Quantum transport of carriers in nanoscale systems has received much interest during the 

last two decades [1-5]. It has been realized that fluctuations of the electric current are able to be 

implemented by virtue of the discreteness of electric charge Q [6-10]. Such issues opened the 

way to the quantum-mechanical description of RLC-circuits. Accordingly, current fluctuations 

have to be understood as typical manifestations of appropriate Hamiltonians incorporating the 

charge and magnetic flux observables. Studies in this field look promising, as they provide ideas 

for further technological developments. To this aim we have to resort to advanced theoretical 

methods [11]. In this context we shall discuss in some more detail the mesoscopic LC-circuit 

with a time dependent voltage source ( )tVs . The starting point is the charge eigenvalue equation 

[9, 12]   

nnqnQ
eq

= ,                                                                                                         (1)                                             

where n  is an integer. This shows that the electric charge gets quantized in units of eq . In 

general, eq can be identified with the electron charge, but eqe 2=  when dealing with Cooper-
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pairs [13]. However, more general alternatives to (1) can also be proposed. Next we have to 

account for the discreteness implied in this manner, by resorting to left- and right-hand discrete 

derivatives. This results in a discrete Schrödinger-equation for the quantum LC-circuit which is 

similar to the one derived before [12]. However, in the present case one deals basically with a 

pair of non-Hermitian but conjugated magnetic flux operators. The product of such operators is 

then responsible for the Hermitian operator of the square magnetic flux. 

Of course, the Hermitian magnetic flux operator, which plays the role of the momentum, 

can also be readily established in terms of a subsequent symmetrization. 

 

2. Preliminaries and notations 

We have to recall that the classical RLC-circuit is described by the balance equation 

)(tV
C

Q
IR

dt

dI
L

s
=++ ,                                                                                             (2) 

in accord with Kirchhoff’s law, where the current is given by dtdQI /= , whereas ( )tVs  stands 

for the external voltage. Inserting 0=R , leads to the Hamiltonian 

 )(
22

,
2

2

2

tQV
C

Q

Lcc
Q sc −+

Φ
=







 Φ
Η ,                                                                       (3) 

where ILc=Φ  and L  denote the magnetic flux and the inductance, respectively. Indeed, (2) is 

produced by the equations of motion characterizing (3) via 

 
( ) Lccdt

dQ
I

Φ
=

Φ∂

Η∂
==

/
,                                                                                          (4) 

and 

 )(tV
C

Q

Qcdt

d
s+−=

∂

Η∂
−=







Φ
,                                                                               (5) 

as usual. We can then say that the electric charge Q  and c/Φ  are canonically conjugated 

variables. The quantization of the LC-circuit could then be done in terms of the canonical 

commutation relation 

 [ ] ciQ h=Φ, ,                                                                                                               (6)  

in which case one gets faced with the flux-operator 
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Q

ci
∂

∂
−=Φ h .                                                                                                            (7) 

However, a such realization is questionable because the electric charge, such as defined by (1) is 

not a continuous observable. This means that the derivation of discretized versions of (7) is in 

order. For this purpose we have to account for right- and left-hand discrete derivatives like 

 )()1()( nfnfnf −+=∆ ,                                                                                         (8)   

and    

 )1()()( −−=∇ nfnfnf ,                                                                                         (9) 

in which case  −∇=+∆ and 

∇−∆=∆∇ .                                                                                                             (10)     

In addition one has the product rule 

)()1()()())()(( ngnfnfngngnf ∇−+∇=∇ ,                                                    (11) 

and similarly for ∆ . 

 

3. The derivation of the tight binding Hamiltonian 

Let us apply the discrete derivatives just mentioned above to the eigenvalue equation (1). 

This yields the relationships 

eqneqqQ +∆+=∆ )1( ,                                                                                         (12) 

and 

eqneqqQ +∇−=∇ )1( ,                                                                                        (13) 

by accounting for nnn −+=∆ 1  and 1−−=∇ nnn . Accordingly, there is 

∆=∆ n
e

q
q

Q ,                                                                                                          (14) 

and ∇=∇ n
e

q
q

Q ,                                                                                                         (15) 

by virtue of the Hermitian conjugation, where qQqQ =+ . Commutation relations such as given 

by )1(],[ ∆+=∆ eq
q

Q                                                                                                 (16) 

and )1(],[ ∇−=∇ eq
q

Q                                                                                                 (17) 

can then be readily established. 
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On the other hand the magnetic flux operators should rely on the discrete alternatives of (7). This 

yields the non-Hermitian realization 

∆−=Φ

e
q

ci
q

h
                                                                                                           (18) 

in accord with the discretization rule enqQ →  of the electric charge. So the square magnetic 

flux is described by the Hermitian operator 

+ΦΦ=Φ+Φ=
+

Φ=Φ 







qqqqhh

22  ,                                                                    (19) 

where 

∆−=+Φ

e
q

ci
q

h
.                                                                                                         (20) 

Keeping in mind (3), we are ready to establish the general form of the Hermitian time-dependent 

Hamiltonian of the quantum LC-circuit as follows 

)(
2

2

22
t

s
V

q
Q

C

q
Q

Lc

qq
q −+

Φ+Φ
=Η                                                                            (21) 

So far one has the quantization rule 














Φ+=Φ

qc

e
iq

ciqQq
h

h 1],[                                                                                 (22) 

in accord with (16), but further realizations can be done in terms of generalized versions of (1). 

We shall then have to look for solutions of the discrete Schrödinger-equation 

)()( t
t

itq Ψ
∂

∂
=ΨΗ h                                                                                          (23) 

by resorting to expansions over Wannier like states relying on (1). Using the amplitude 

)(| |)( tntnC Ψ=                                                                                                   (24) 

produces the second-order discrete equation 
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              (25) 

which has been written down before [12]. However, this time one proceeds rigorously in terms of 

discrete derivatives needed. 

The present description is characterized by the commutation relations 

qP
c

i
LqqQ

h
−=Η ]

)0(
,[ ,                                                                                        (26) 




























Η−= Lq

eq
i

c

qP

qQ
)0(

2

2
1,

h

h ,                                                                            (27) 

and 0,
)0(

=Η 







q

P
q

,                                                                                                       (28) 

working in accord with (1). It should be specified that 

( ) ( )+Φ+Φ=∇+∆−= qq
eq

ci
qP

2

1

2

h
                                                                     (29) 

denotes the Hermitian flux-operator, while 

( )∇−∆−=
Φ+Φ

=Η
LeqLc

qq
q 22

2

22

)0( h
                                                                       (30) 

is the Hermitian interaction-free Hamiltonian. 

 

4. Generalized versions of the electric charge quantization 

Looking for generalizations let us replace (1) the charge eigenvalue equation 

      ( ) nnFqnQ
eq

~~~
= ,                                                                                           (31) 

in which ( )nF  is an arbitrary real function. We shall also assume that, in general n~  is different 

from n . Working within the subspace spanned by n~ , one finds 

 ( ) ( )nFqnFqQ
eeq
∆+∆+=∆ 1

~
,                                                                            (32) 
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and 

 ( ) ( )nFqnFqQ
eeq
∇+∇−=∇ 1

~
.                                                                           (33) 

Performing the Hermitian conjugation gives ( )∇=∇ nFqQ
eq

~
and ( )∆=∆ nFqQ

eq

~
, so 

that 

[ ] ( )( )∆+∆=∆ 1,
~

nFqQ
eq

,                                                                                       (34) 

and 

[ ] ( )( )∇−∇=∇ 1,
~

nFqQ
eq

.                                                                                      (35) 

One sees that (34) and (35) reproduce precisely (16) and (17) as soon as ( ) nnF = . 

Now we are ready to introduce rescaled flux operators like 

( )








∆

∆
−=Φ

nFq

ci

e

q

1~ h
,                                                                                          (36) 

and 

( ) ( ) ( )









∇
−

∆
+∇

∇
−=Φ+

nFnFnFq

ci

e

q

111~ h
 ,                                                      (37) 

 

which can be viewed as generalized counterparts of (18) and (20), respectively. 

Accordingly, the interaction-free Hamiltonian is given by 

( ) ( )
2

00

2

~~
~

Lc
HH

qq

qq

ΦΦ
=→

+

,                                                                                           (38) 

instead of (30), which can be rewritten equivalently as 

 
( )

( )
( )( )( )∇−−∆−= nG

qnL
H

e

q 1~
2

~
2

2
0 h

.                                                                  (39) 

This time the inductance gets rescaled as 

( ) ( )( )2~
nFLnLL ∇=→ ,                                                                                        (40) 

whereas 

( )
( )
( )










∆

∇
−=

nF

nF
nG 1  .                                                                                             (41) 
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Under such conditions the discrete Schrödinger-equation implemented by the generalized 

charge-quantization condition (31) is given by                         

             

( )
( )

( )( )
( )

( )

( )
( )

( ) ( ) ( ) ( )

( )tC
t
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tCtVnFqnF
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2

22
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2

1
~

2

11
~

2

                          (42) 

which differs in a sensible manner from (25). One recognizes that equation (42) is rather 

complex. However, it provides useful insights for a better understanding of quantum mechanical 

circuits. Choosing as an illustrative example the charge-quantization rule 

   ( ) n
Q

P
nF =   ,                                                                                                        (43) 

where P and Q are mutually prime integers, one finds that (25) reproduces (42) just in terms of 

the substitution 

   ee q
Q

P
q → .                                                                                                            (44) 

This means that if eq  is elementary charge, the same concerns QePq / . In other words 

the selection of the elementary charge is actually a matter of convenience with respect to the very 

quantum mechanical description of the LC-circuit. Accordingly, nothing prevents us from 

inserting from the very beginning the modified elementary charge QePq /  instead of eq , which 

looks rather unexpected. 

 

5. Conclusions 

In this paper we succeed to establish the quantum-mechanical description of an LC-circuit 

in terms of the discrete Schrödinger-equation (42). This time one starts from a rather general 

quantization rule for the electric charge. To this aim one resorts to a real, but integer dependent 

function F (n). One proceeds by keeping invariant the “unit cell” realization of the (Q, P) phase-

space, such as displayed by the commutation relation 
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2
1,
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ci

q
Q

q
P

q
Q

q
P h                                                                (45) 

in which the flux and charge observables 2/
~~~








 +Φ+Φ=
qqq

P  and qQ
~

 ( qP  and qQ ) rely on 

the general usual nnF =)(  quantization rule of the electric charge. This results in sensible 

rescaling of the discrete right-hand derivative and of the inductance. Such rescalings are indicated 

by (39) and (40), respectively. Other concrete selections of the charge quantizations function 

)(nF  deserve further attention. 
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