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Abstract  

One derives the relativistic version of the transfer matrix method for an electron moving through a piecewise 

constant potential.  
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1. Introduction 

The simplest non-relativistic quantum modeling of nanoscale semiconductor devices is 

based on the Schrödinger equation written in solid state domains where the potential is constant 

and the influence of the lattice is encapsulated in the value of effective electron mass. When the 

devices are made from semiconductor heterostructures, there are many such domains separated 

among themselves by interfaces where besides the step in potential we also have to consider the 

discontinuity in effective electron mass [1]. The problem has been solved by applying appropriate 

boundary conditions [2],  
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where ψ
L

, 
L

m  and ψ
R

, 
R

m  are the electron wave function and effective mass of the electron to 

the left ( L ) and right ( R ) side of a given interface. The results obtained with the above-described 

procedure are in agreement with experimental data [3] and are widely used since the transmission 

coefficient can be calculated via the simple method of the transfer matrix [4,5]. However, the 

assumed boundary conditions (1) are imposed somewhat artificially in order to conserve the 

particle current.  

Another attitude is to start with the Dirac equation even though it is clear that the 

relativistic effects have to be very small. Nevertheless, the relativistic linear dependence between 
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energy and mass could offer some technical advantages for finding appropriate connection 

conditions at interfaces where the potential and the effective mass present discontinuities [6].  

Our purpose is to derive the relativistic version of the transfer matrix method for the motion 

in a fixed direction of a Dirac electron with point-dependent effective mass, passing through 

rectangular barriers of arbitrary profile. We show that the use of the Dirac equation allows one to 

impose simple connection prescriptions at interfaces. However, the price to pay for working with 

variable mass is that there are many energy scales corresponding to different mass values. For 

this reason we need to rescale the experimental potential if we want to measure the energies with 

respect to a unique energy scale. The rescaled potential will be considered the appropriate 

relativistic potential of our problems. We show that only in this way the non-relativistic limit of 

our approach recovers the results derived from Schrödinger equation with the conditions (1).  

 

2. Plane waves. One dimensional motion 

Let us consider the Minkowski space-time in a frame of coordinates x
µ  ( 0 1 2 3µ ν, , ... = , , , ) 

and the metric diag(1 1 1 1)η = , − , − , − . In natural units (with 1c= =h ) the time is 0
x t=  while the 

space coordinates, 1
x x= , 2x y=  and 3

x z= , are the components of the vector x
r

. In this frame, 

the relativistic quantum motion of an electron of mass m  and charge e− , in an arbitrary external 

electromagnetic field Aµ , is governed by the Dirac equation [7],  

( ) 0i eA m
µ

µ µγ ψ ψ∂ − − = ,                                                                                                         (2) 

that produces the conserved current (in units of e− ): jµ µψγ ψ= ,   where 0ψ ψ γ+=  is the Dirac 

adjoint of the spinor ψ . In what follows, we take the γ -matrices in the standard representation 

(with diagonal 0γ ) [7]. Here we are interested to study the quantum modes in the particular case 

of a space domain D  where ( ) 0A x =
r

 and 0 ( ) consteA x V= = .  for any x D∈
r

. In this domain the 

Dirac equation can be analytically solved and different quantum modes can be well-defined using 

complete sets of commuting operators. Thus the plane wave solutions are eigenspinors of the 

complete set of commuting operators { }
D

E P W, ,
r

 constituted by the Dirac operator, 

0

DE i V
µ

µγ γ= ∂ − , momentum P i= ∇
r

, and the Pauli-Lubanski operator 2W P S= ⋅
rr

. The 
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corresponding eigenvalues, m , k
r

 and λ , define the plane wave spinor of positive frequency, 

momentum k
r

, energy 
22( )E k m Vk= + +

r r
 and helicity λ  that reads [7,8]  
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We denoted by ( )kλξ
r

 the normalized Pauli spinors of the helicity basis that satisfy 

( ) ( )k k k kλ λσ ξ λ ξ⋅ = | |
r r r rr

 and [ ( )] ( )k kλ λ λ λξ ξ δ+
′ ′,=

r r
 (where 

i
σ  are the Pauli matrices and 1λ = ± ). 

One can verify that each solution (3) is normalized as 
kk λ λλλ

ψ δψ ′,′,,
=rr  and, along the direction k

r
 

produces the current
1

( )
kk

k
j k

mk λλ
γ ψψ ,,

| |
= ⋅ = ,

| |
rr

r
r r

r                                                                   (4) 

The general results presented above help us to write down the solutions of simpler one-

dimensional problems along the third axis. Of a special interest is the problem of the electron 

moving through a system of N  rectangular barriers of arbitrary shape (Fig. 1). These domains 

are limited by plane interfaces at fixed points, 1 2 1N
z z z +, , ..., , among them those from 1z  and 1N

z +  

represent the interfaces between the system of barriers and the domains outside, denoted by 

0 1( ]
in

D D z≡ = −∞,  and, respectively, 1 1[ )
out N N

D D z+ +≡ = ,∞ . It is natural to consider that in 

these latter domains the potential vanishes, 0
in out

V V= = . In addition, we assume that in each 

domain 
i

D  the electron has the effective mass 
i

m  while in the domains 
in

D  and 
out

D  its mass is 

just the bare mass m .  

 

Figure 1 A sequence of potential steps 

 

In special relativity the energy scale depends on the value of the rest mass while the 

electromagnetic potential is defined up to a gauge. Therefore, in problems where this mass is 
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replaced by a point-dependent effective mass, we could introduce a unique energy scale only by 

choosing suitable gauge fixings, dealing with the different values of the effective mass. In these 

conditions we are encouraged to consider in each domain 
i

D  the relativistic potential ˆ
iV  instead 

of the experimental one 
i

V . The relation among these potentials has to be derived from a natural 

supplemental condition which will fix up the gauge in the domains 
i

D .  

In any domain 
i

D  there exists a plane wave solution of energy E  and helicity λ  propagating in 

the sense of the positive semiaxis z ,  

( )
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1
( )

2

iiEt ik zi i

E

ii

k
t z e

km

λ
λ

λ
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+ 
  − +
 

,  − 
 

, = ,                                                                                        (5) 

which depends on the constants ( ) ˆ
i ii

k E mV
± = − ±  and scalar momentum  

( ) ( ) 2 2ˆ( )i i i ii
k k k E mV

+ −= = − − .                                                                                        (6) 

We note that in this case the helicity spinors coincide to those of the spin basis since the spin is 

projected on the third axis. Consequently, the two-component spinors λξ  take the usual form 

1 (1 0)Tξ = ,  and 1 (0 1)Tξ− = , . The plane wave solution with the same E  and λ  but propagating in 

the opposite sense reads  
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+ 
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, = .
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                                                                                       (7) 

The conclusion is that, in a domain 
i

D , the most general plane wave solutions of energy E  and 

helicity λ  are given by the linear combinations  

( ) ( ) ( )i i i

E i E i Et z A t z B t zλ λ λφ χ, , ,Ψ , = , + , ,                                                                                 (8) 

where 
i

A  and 
i

B  are arbitrary complex numbers. Each solution (8) gives the total current which 

does not depend on helicity: 

2 2i
i i i

i

k
j A B

m

 
 
 

= | | − | | ,                                                                                                    (9) 

Finally we can establish the relation among the relativistic and experimental potentials assuming 

that in a domain 
i

D  the momentum 
i

k  vanishes only when the total non-relativistic energy 

nr
E E m= − , calculated with respect to the bare mass m , equals the experimental potential 

i
V . 

Therefore, according to Eq. (6) we obtain the form of our relativistic potentials  
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ˆ
i ii

V mV δ= + ,                                                                                                                          (10) 

where 
i i

m m mδ = − .  

 

3. The transfer matrix 

In what follows we shall derive the transfer matrix in the pure scattering case. This means 

that the energy satisfies the condition 0 sup{ 0 1 1}
i

E E V m i N≥ = + | = , ,..., +  and 
i

k  take only real 

values. In addition, we specify that the global solutions we consider here have the same fixed 

energy E  and helicity λ  in all the domains 
i

D . In problems involving many domains 
i

D  it is 

difficult to manipulate solutions of the form (8). For this reason we replace these solutions by 

associated two-dimensional vectors [4, 6],  

( )
i

i

ik z

i

i ik z
i

Ae
v z

Be

 
 
 
 − 
 

= ,                                                                                                              (11) 

which carry all the information we need for calculating the currents (10):  

3[ ( )] ( )i
i i i i

i

k
j v z v z z D

m
σ+= , ∀ ∈ .                                                                                      (12) 

Thus the vectors (11) become the basic elements of the relativistic formalism of the transfer 

matrix for rectangular barriers [5]. In the domains 0D  and 1N
D + , where the potential vanishes and 

the mass is m , the spinors 0

E λ,Ψ  and 1N

E λ
+
,Ψ  are associated to the vectors: 

0( ) ( )

ikz

in

in ikz

in

A e
v z v z

B e

 
 
 

−  
 

≡ = ,  1( ) ( )

ikz

out

out N ikz

out

A e
v z v z

B e

 
 
 

+ −  
 

≡ = .                                                  (13) 

Now, the problem is to find the transfer matrix, M , which transforms the out  vector into the in  

one as  

0 1 1 1( ) ( )
N N

v z M v z+ += ,                                                                                                         (14) 

allowing one to calculate the transmission coefficient. The global solution of energy E  and 

helicity λ  is continuous in each point 
i

z  which means that: 

1 ( ) ( )i i

E i E it z t zλ λ
−
, ,Ψ , = Ψ ,                                                                                                  (15) 

for 1 2 1i N= , ,..., + . After a few manipulations we find that these conditions lead to simple 

relations among the associated vectors,  

1( ) ( ) 1 2 1
i i i i i

v z M v z i N− = , = , ,..., + ,                                                                          (16) 



 77 

where the matrices  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

i i i i

i

i i i i

r r r r
M

r r r r

+ − + −
 
 
 + − + − 
 

+ −
=

− +
  ,    

( ) ( )
( ) ( )1 1

( ) ( )

1 1

i i i i
i i

i i i i

m k m k
r r

m k m k

+ −
+ −− −

+ −
− −

= , = .                          (17) 

The last step is to introduce the translation matrices  

1

1

( )

( )

0

0

i i i

i i i

ik z z

i ik z z

e
T

e

+

+

− 
 
 

− −  
 

=                                                                                                  (18) 

which transform ( )
i i

v z  into 1( ) ( )
i i i i i

v z T v z+ = . With these elements we can write down the final 

expression of the relativistic transition matrix  

1

1

N

i i N

i

M M T M
 
 
  +
 

= 

= .∏                                                                                                              (19) 

For 0E E≥ , when 
i

k  are real numbers, the matrices 
i i

M M
+=  and have the property  

( ) ( ) 1
3 3 3

1

i i
i i i i

i i

m k
M M r r

k m
σ σ σ+ − −

−

= =                                                                                      (20) 

which guarantees the conservation of the total current (12), 1in i out
j j j j= = ... = = ... = . In these 

circumstances, taking 0
out

B =  we have 2 2 2

in in out
A B A| | − | | =| |  which allows us to define the 

transmission coefficient  

2
2

112

out

in

A
T M

A

−| |
= =| | .

| |
                                                                                                             (21) 

We note that T  results to be a function only of energy, being independent on the helicity of the 

electron passing through the rectangular barriers. The function ( )T E  calculated here is defined 

only on the domain 0E E≥ . However, starting with the present theory, the extension to energies 

smaller than 0E  can be done but this is no trivial because of the wells producing discrete energy 

levels or tunnelling effects which need to be treated with specific methods.  

 

Conclusions 

Here we constructed the relativistic version of the transfer matrix for the Dirac electron 

moving through rectangular barriers, in a similar manner as in the non-relativistic theory based on 

the Schrödinger equation. Our approach allows one to calculate the transfer matrices using the 

same rules but with matrices 
i

M  of different forms.  
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In the non-relativistic limit the quantities ( )

i nr ik E V
− = −  remain unchanged but we have 

( ) 2i ik m
+ → . Consequently, we find that ( ) 1

i
r

+ →  remaining with the terms  

( ) 1

1

i nr i
i i

i nr i

m E V
r r

m E V

− −

−

−
= = ,

−
                                                                                                 (22) 

which coincide to those of Refs. [5] at least in the domain 0E E≥  considered here. Thus, the 

general conclusion is that the non-relativistic limit of our approach based on the three-

dimensional Dirac equation with the relativistic potentials (10) reproduces identically the results 

of the traditional method based on the Schrödinger equation and conditions (1).  

In other respects, the results obtained here indicate that the use of the Dirac equation could be 

helpful in other problems concerning the motion of electrons in semiconductor heterostructures 

as suggested in Ref. [6].  
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