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Abstract 

The Dirac bracket for gauge-fixed three- and two-forms with Stueckelberg coupling is derived initially along 

an reducible manner and subsequently we folowing an alternative irreducible treatment, we obtain the same 

results.  

 

1. Introduction 

The canonical approach of the systems with reducible second-class constraints represents a 

difficult problem. This is because not all the second-class constraint functions are independent, 

hence the matrix of the Poisson brackets among them is not invertible. 

 In order to construct the Dirac bracket for such systems in a consistent manner we have the 

following options: 

     • to isolate a set of independent constraint functions and then build the Dirac bracket in 

terms of this smaller set; 

     • to construct the Dirac bracket in terms of a noninvertible matrix without separating the 

independent constraint functions; 

     • to substitute the reducible second-class constraints by some equivalent irreducible ones 

[by appropiately enlarging the original phase-space] and further work with the Dirac bracket 

based on the irreducible constraints.  

 

2. Second-stage reducible second-class constraints 

Our starting point is a system with the phase-space locally parametrized by N  canonical 

pairs ( )i

ia
pqz ,=  and subject to the second-stage reducible second-class constraints  
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These constraints are purely second-class if any maximal, independent set of 

210 MMM +−  constraint functions Aχ , 2101,= MMMA +− , among the 
0

αχ is such that the 

matrix  ],,[= BAABC χχ  (4) 

is invertible. In terms of such a set of independent constraints, the Dirac bracket takes the 

form  ],,[],[],[=],[ GMFGFGF B

AB

A χχ−∗  (5) 

where A

CBC

AB
CM δ≈ . 

We can construct the Dirac bracket even without performing such a separation. We denote 

the matrix of the Poisson brackets among the second-class constraint functions by  

  ].,[=
0000

βαα
χχβC  (6) 

It is easy to see, on behalf of (2), that the matrix 
00

βα
C  is not invertible 0.
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0

1
≈β

α
αα CZ  (7) 

If 1

0
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αA  stand for some functions that satisfying  
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 ββα
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then we can introduce another matrix 00
βα

M  through the relation ,0

000

00 α
γ

β
γβ

α
DCM ≈  (9) 

with 0000 =
αβ βα

MM − , such that the bracket  

  [ ] [ ] [ ] [ ],,,,=,
0
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GMFGFGF β

α

α χ
β

χ−
∗

 (10) 

defines the same Dirac bracket like (5) on the surface (1), where  

  .= 1

0
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1

0

0

0

0
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α
ββββ AZD −  (11) 

 

2. The model 

We consider the canonical approach to gauge-fixed three- and two-forms with Stueckelerg 
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coupling, described by the Lagrangian action  
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where  ,=,= ]] νρµµνρνρλµµνρλ HFAF ∂∂  (13) 

and 4≥D . Everywhere in this presentation the notation ][ νµK  signifies complete 

antisymmetry with respect to the indices between brackets, with the conventions that the 

minimum number of terms is always used and the result is never divided by the number of terms. 

The canonical analysis of this model leads to the first-class constraints  
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where the momenta µνΠ  and µνρπ  are respectively conjugated to µνH  and µνρA . In order 

to fix the gauge, we have to choose a set of canonical gauge conditions. An appropriate set of 

such gauge conditions is given by  

  

( ) ( )

( )

( )
0.

0,2

0,0,

212121
2

11
2

21
0

21
2

1
0

1
2

≈−∂−≡

≈∂−≡

≈≡≈≡

i
MH

i
A

i

H

i
A

i
GHG

iki

k

i

ki

k

i

iiii

χ

χ  (17)(18)(19) 

The constraints (14)-(19) are second-class and, moreover, second-stage reducible. It is 

simple to see that (14) and (17) generate a submatrix (of the matrix of the Poisson brackets 

among the constraint functions) of maximum rank, therefore they form a subset of ireducible 

second-class constraints, so they are not relevant in view of our appoach. Thus in the sequel we 

examine only the constraints (15)--(16) and (18)--(19), which we organize as  
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The second-class constraint functions from (20) are second-stage reducible, with the first-, 

respectively, second-stage reducibility functions given by  
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The matrix of the Poisson brackets among the constraints (20) is expressed by  
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and k

k∂∂∆ = . 

 

 3."Reducible" Dirac bracket 

 Now, we construct the Dirac bracket with respect to the constraints (20). In order to 

construct the matrix 0

0

α
βD  defined in (11), we take 1

0

β
βA  of the form 
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  Then, by means of (11) we find  
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Using (23) and (26) it follows that the relation (9) is fulfilled for  
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With 00
βα

M  at the hand, we can construct the Dirac bracket by means of formula (10). 

After some computation, we find that the only non-vanishing fundamental Dirac brackets are 

given by  
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where we use the notations  
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In this way, the (reducible) Dirac analysis of this model is complete. 

 

4.Irreducible analysis 

In this section we reobtain the non-vanishing fundamental Dirac brackets (28)--(31) in an 

ireducible manner. 

 

4.1.Original phase-space approach 

Initially, we investigate the problem of the construction the Dirac bracket for our model in 

the original phase-space in terms of an invertible matrix. In this sense, we remark that 0

0

α
βD  

given in (11) has two nice properties, that can be checked by direct computation. First, it is a 

projector  ,= 0

0

0

0

0

0

αβα
γγβ DDD  (34) 

and second, it satisfies the relations  .=
00

0

0
βαβ χχ

α
D  (35) 

It can be proved that the following theorem holds for systems with second-stage reducible 

second-class constraints . 

  Theorem 1 There exists an invertible, antisymmetric matrix 00
δ

µ
γ

 such that  

  .= 0

0
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0

00 βδ
µ

αβ
δ

γ

γ

α
DDM  (36) 

In the case of our model, where the matrices 0

0

α
βD  and 00

βα
M  are expressed by (26) and 

respectively (27), the matrix 00
δ

µ
γ

 takes the form  
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Replacing (36) in (10) and using (35) we obtain that the Dirac bracket takes the final form  

  [ ] [ ] [ ] [ ].,,,=,
0

00

0
GFGFGF β

α

α χ
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µχ−
∗

 (38) 

By computing the fundamental Dirac brackets with the help of (38), we reobtain precisely 

(28)--(31). 

 

 4.2.Extended phase-space approach 

 In the sequel we construct some equivalent irreducible second-class constraints associated 

with (1) such that the Dirac bracket constructed with respect to the irreducible set coincides with 

the Dirac bracket corresponding to the reducible second-class model. Firstly, we introduce some 

new variables ( )
11

1 1,= M
y

α
α  with the Poisson brackets  

  [ ] ,=,
1111 βω

αβα yy  (39) 

and consider the system subject to the reducible second-class constraints  

  0.0,
10

≈≈ ααχ y  (40) 

The Dirac bracket corresponding to the above second-class constraints on the phase-space 

locally parametrized by ( )
1

, αyz
a  reads as  
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where the Poisson brackets from the right-hand side of (41) contain derivatives with respect 

to all az  and 
1

αy . After some computation we infer that [ ] [ ] ,,,
,

∗∗
≈ GFGF

yz
 where [ ]∗GF ,  is 

given by (38). Under these considerations, the following theorem can be proved to hold. 

  Theorem 2 There exists a set of irreducible second-class constraints  
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 such that: 

     • (42)--(43) is equivalent with (40) [this means that both sets describe the same surface 

on the larger phase-space]; 

     • the Dirac bracket with respect to the irreducible second-class constraints is given by  
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In the formula (44) 1
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αa  is a matrix that fulfills 21
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existence of such functions is guaranteed by the fact that the second-class constraints are by 

assumption second-stage reducible. 

In order to construct the irreducible second-class constraints for our model we take the 
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Then, the equivalent ireducible second-class constraints are expressed by  
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Now, we construct the Dirac bracket with respect to the irreducible second-class constraints 

(49)--(54). In order to construct the matrix 2
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If we compute the Dirac brackets among the original field/momenta on behalf of (44), we 

reobtain the same fundamental non-vanishing Dirac brackets like in the reducible situation, 

namely, (28)--(31). 
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5.Conclusion 

In this paper we have presented three equivalent approaches to the problem of constructing 

the Dirac bracket for gauge-fixed three- and two-forms with Stueckelberg coupling: 

     • we constructed the Dirac bracket in terms of a noninvertible matrix 00
βα

M ; 

     • we derived the Dirac bracket based on an invertible matrix 00
β

µ
α

; 

     • we substituted the original second-class constraints by some equivalent ireducible ones 

on a larger phase-space and observed that the Dirac bracket is in this case equivalent with the 

Dirac brackets emerging from the previously mentioned approaches.  

In conclusion, for gauge-fixed three- and two-forms with Stueckelberg coupling, the 

fundamental Dirac brackets with respect to the original variables derived within the three 

approaches coincide. 
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