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Abstract 

 No-go results on the existence of consistent, four-dimensional couplings between an irreducible spin-one 

field and a Q-gravitino, both massless, are obtained from a deformation approach based on local BRST 

cohomology. 

 PACS number: 11.10.Ef  
 

 1. Introduction 

 The development of the BRST formalism took a new turn once its cohomological 

reformulation became available since it made possible, among others, a useful investigation of 

many interesting aspects related to the perturbative renormalization problem [1]—[4], the 

anomaly-tracking mechanism [4]—[8], the simultaneous study of local and rigid invariances of a 

given theory [9] as well as the reformulation of the construction of consistent interactions in 

gauge theories [10]—[12] in terms of the deformation theory [13]—[15] or, actually, in terms of 

the deformation of the solution to the master equation. The impossibility of cross-interactions 

among several Einstein or Weyl gravitons [16]—[17] and of cross-couplings among different 

Einstein or Weyl gravitons in the presence of matter fields [16], [18]—[21] has recently been 

shown by means of cohomological arguments. In the same context the uniqueness of 4=D , 

1=N  supergravity was proved in [22]. 

The final goal of our research is the investigation of the uniqueness of the simple conformal 

SUGRA in four spacetime dimensions using the deformation theory. 

It is well known that the field spectrum of 4=D , 1=N  conformal SUGRA consists in a 

massless spin- 2 , a nonmassive spin-3/2  and an irreducible spin-one fields. In the free limit the 

action of simple conformal SUGRA in 4=D  reduces to the sum between Weyl, massless Q-
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gravitino, and the standard abelian gauge field actions  
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 In order to determine the consistent interactions that can be added to action (1) we must 

study, beside the self-interactions, which are known from the literature, also the cross-couplings. 

The latter problem can be solved in two steps: firstly, we determine the interaction vertices 

containing only two of the three types of fields, and then the vertices including all the three kinds. 

In this talk we present one of the ingredients mentioned in the above, namely the problem of 

constructing consistent interactions among the nonmasive spin-one (described at the Lagrangian 

level by the standard one-form action) and the massless spin-3/2  (described in the free limit by 

an action with three spacetime derivatives) fields. We investigate these cross-couplings in the 

framework of the deformation theory [13] based on local BRST cohomology [23]. 

 

 2. Free model 

 Our starting point is the Lagrangian action represented by the sum between the abelian 

one-form and massless ''Q''-gravitino [24] actions in four space-time dimensions  
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We employ the flat metric of 'mostly' minus signature and work with the γ -matrices in the 

Majorana representation [all γ -matrices are purely imaginary, 0γ  is Hermitian and iγ  are anti-

Hermitian]. In (2) µψ  is a real spin-vector. The theory (2) is invariant under the gauge 

transformations  .i=,= ζγξψδεδ µµµεµµε +∂∂A  (3) 

 The gauge parameter ε  is bosonic and ξ , ζ  are Majorana spinors. The gauge algebra of 

the free theory (2) is Abelian. 

We observe that there are no non-vanishing local transformations of ε , ξ  and ζ  that 

annihilate µεδ A  and µεψδ . This remark allows us to conclude that the generating set of gauge 

transformations (3) is irreducible. 
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 3.Construction of consistent interactions 

 Due to the fact that the solution to the master equation contains all the information on the 

gauge structure of a given theory, we can reformulate the problem of introducing consistent 

interactions as a deformation problem of the solution to the master equation corresponding to the 

``free'' theory. If an interacting gauge theory can be consistently constructed, then the solution S  

to the master equation associated with the ``free'' theory can be deformed into a solution S   
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 of the master equation for the deformed theory  

  ( ) 0,=, SS  (5) 

 such that both the ghost and antifield spectra of the initial theory are preserved. The 

equation (5) splits, according to the various orders in λ , into  

                                                        ( ) 0,=, SS                                                                 (6) 

( ) 0,=,2 1 SS                                                                 (7) 

( ) ( ) 0,=,,2 112 SSSS +                                                                 (8) 

( ) ( ) 0,=,, 213 SSSS +                                                                 (9) 

                                                                       M  

The equation (6) is fulfilled by hypothesis. The next one requires that the first-order 

deformation of the solution to the master equation, 1S , is a co-cycle of the ``free'' BRST 

differential. However, only cohomologically non-trivial solutions to (7) should be taken into 

account, as the BRST-exact ones [BRST co-boundaries] correspond to trivial interactions. This 

means that 1S  pertains to the ghost number zero cohomological space of s , ( )sH 0 , which is 

generically nonempty due to its isomorphism to the space of physical observables of the ``free'' 

theory. It has been shown [on behalf of the triviality of the antibracket map in the cohomology of 

the BRST differential] that there are no obstructions in finding solutions to the remaining 

equations [(8)--(9), etc.]. However, the resulting interactions may be nonlocal, and there might 

even appear obstructions if one insists on their locality. The analysis of these obstructions can be 

done with the help of cohomological techniques. 

For our free model the solution to the master equation reads as  
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 where we denoted by η , χ  and θ  the ghost associated with the gauge parameters ε , ξ  

and respectively ζ . 

 

 4. Main results 

 By direct computation we obtain that the first-order deformation reads as  
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 where k , p  and q  are arbitrary constants and the objects µνF  and µνF̂  are given below  
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 and pertain to the cohomology of the derivative along the gauge orbits for the free theory. 

In fact, the cohomology of the derivative along the gauge orbits ( )γH  is generated by the 

antifields associated with the original fields/ghosts together with their spacetime derivatives, by 

the field strength µνF  and (12) together with their spacetime derivatives as well as the 

undifferentiated ghosts η , χ  and θ . 

The second order deformation is governed by the equation (8). If we denote by Λ  and b  

the nonintegrated densities of the functionals ( )11, SS  and respectively 2S , the local form of (8) 

becomes  ,2= µ
µnsb ∂+−Λ  (13) 

 with  ( ) ( ) ( ) 1,=gh0,=gh1,=gh µnb∆      (14) 

 for some local currents µ
n . Developping Λ  and b  with respect to the antighost number 

and projecting the equation (13) on various antighost numbers with obtain the equivalent tower of 

equations  

                ,2= 222

µ
µγ nb ∂+−Λ                                           (15) 

( ) .0,1=,2= 1 Inbb IIII

µ
µγδ ∂++−Λ +                                           (16) 
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 By direct computation we obtain that  
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By virtue of the above discussion concerning the cohomology of the derivative along the 

gauge orbit, we observe that 2Λ  given in (17) is a nontrivial object from ( )γH . On the othe 

hand, the equation (15) requires for 2Λ  to be γ -exact modulo d  so it has to be zero. This 

implies that  0.=k  (20) 

Replacing (20) in (11) it simply reduces to  
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Performing the same operation in (17)--(19) we conclude that Λ  is zero so  
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  0.=2S  

The previous results can be summarized in the following theorem. 

 Theorem 1 Under the assumptions of: 

 i) space-time locality, 

 ii) smoothness of the deformations in the coupling constant, 

 iii) (background) Lorentz invariance, 

 iv) Poincar e′  invariance (i.e. we do not allow explicit dependence on the space-time 

coordinates) and 

 v) the maximum number of derivatives in the interacting Lagrangian is three, 

 the only consistent deformation of (2) involving a massless spin-3/2  field and an abelian 

one-form gauge field reads as 
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  and it is invariant under the original gauge transformations.   

 

 5.Conclusions 

 In this paper we have discussed the cohomological approach to the problem of constructing 

consistent interactions between the abelian one-form gauge field µA  and the massless ''Q''-

gravitino µψ . Under the assumptions of smoothness of the deformations in the coupling constant, 

(background) Lorentz invariance, Poincar e′  invariance (i.e. we do not allow explicit dependence 

on the space-time coordinates) and the maximum number of derivatives in the interacting 

Lagrangian is three, we have exhausted all the consistent, non-trivial couplings. 
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