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Abstract 

An irreducible canonical approach to first- and second-order reducible second-class constraints is given.   

 

 

1. Introduction 

Physical theories of crucial significance, like the ones describing fundamental 

interactions, are constrained systems at the Hamiltonian level [7,8,3,4]. These are theories 

pictured by more variables than there are independent physical degrees of freedom. This further 

implies that the canonical variables are not all independent, there existing some relations among 

them called constraints. The relevant classification of constraints is that which distinguishes 

between first-and second-class constraints.  

In this talk we expose an irreducible approach to first- and second-order reducible second-

class constraints. Our approach is based on the following main steps: (i) we construct the Dirac 

bracket for the considered reducible second-class constraint systems; (ii) we introduce some 

supplementary phase-space variables and construct an equivalent set of reducible second-class 

constraints, whose Dirac bracket coincides with the original one; (iii) we associate an irreducible 

set of second-class constraints with that from step (ii) and show that the Dirac bracket for the 

latter set coincides with the Dirac bracket for the former second-class system. These three steps 

ensure that the original Dirac bracket coincides that constructed with respect to the irreducible 

second-class constraints.  

 

2. First- and second-class constraints 

We consider a dynamical system described by a degenerate Lagrangian 
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For the sake of simplicity we will use the notation for systems with a finite number of degrees of 

freedom, but the analysis can be straightforwardly extended to field theories. It is known that 

condition (1) leads to a system with constraints at the Hamiltonian level. The constraints are 

some relations among the phase space variables, i.e. some relations of the type 

 ,,...,1,0)( Mz
a =≈Φ αα  (2) 

where  

 ),,( i

ia
pqz =  (3) 

are the canonical phase-space coordinates. The symbol “ ≈ ” is known as the weak equality and 

means that (2) are not identities, but merely equations. Constraints (2) are said to be irreducible if 

the constraint functions )( a
zαΦ  are independent.  

With respect to their behaviour related to the phase-space symplectic structure (the Poisson 

bracket) the constraints are divided into first- and second-class. Constraints (2) are first-class if 

 γαβ
γ

βα Φ=ΦΦ C],[  (4) 

where αβ
γ

C  are some phase-space functions. The first-class constraint functions generate some 

local transformations of the phase-space coordinates called Hamiltonian gauge transformations, 

so the fixation of the dynamics requires some additional restrictions (canonical gauge conditions) 

to be imposed on the phase-space coordinates in order to ‘kill’ the non-physical degrees of 

freedom. Constraints (2) are second-class if the matrix of elements  

 ,],[ αββα C≡ΦΦ  (5) 

is invertible, at least weakly. The Hamiltonian equations that govern the dynamics of a purely 

second-class system read as  

 ,],[ *Hzz aa ≈&  

where H  represents the canonical Hamiltonian of the system and *][,  is the Dirac bracket, 

defined through 

 ],,[],[],[],[ *
GCFGFGF β

αβ
α ΦΦ−=  (6) 
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where αβ
C  are the elements of the inverse of αβC , i.e.

γ

α
βγ

αβ δ≈CC . By contrast to the first-class 

case, the dynamics of a purely second-class Hamiltonian theory is completely determined by the 

initial conditions.  

 

3. Reducible approach to first-order reducible second-class constraints 

In the sequel we will redenote the second-class constraints by  

 00 ,...,1,0)(
0

Mz
a =≈ αχα  (7) 

and for simplicity we will take all the phase-space variables to be bosonic. In addition, we 

presume that the functions 
0αχ  are not independent, there existing some nonvanishing functions 

1

0
α

α
Z  such that  

 .,...,1,0 110
1

0 MZ == αχαα
α

 (8) 

Moreover, we assume that 
1

0
α

α
Z  are independent. If these conditions are met, we say that the 

second-class constraints are first-order reducible and the functions 
1

0
α

α
Z  are called first-order 

reducibility functions.  

The canonical approach to systems with reducible second-class constraints is quite intricate, 

demanding a modification of the usual rules as the matrix of the Poisson brackets among the 

constraints is no longer invertible.  

A first idea is to isolate a set of independent constraints  

 ,,...,1,0 10 MMAA −=≈χ  

and then construct the Dirac bracket [7,8] with respect to this set  

 ],[],[],[],[ * GMFGFGF B

AB

A χχ−=  (9) 

In (9), ABM is the inverse of the matrix of elements ],[ BAABC χχ=  in the sense 

that C
A

BC

AB
CM δ≈ . The split of the constraints may lead to the loss of important symmetries, so 

it should be avoided.  

Another idea is to construct the Dirac bracket in terms of a non-invertible matrix without 

separating the independent constraint functions [4,9,9,10,11]. Here, we start with the matrix  

 ],,[
0000 βαβα χχ=C  (10) 

that is not invertible because  
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If 
0

1
α

α
d  is solution to the equation  

 
1

1

1

0

0

1
β

α
β

α
α

α δ≈Zd  (12) 

then we can introduce a matrix 00βα
M  through the relation  

 
0

1

1

0

0

0

00

00
γ

α
α

α
γ

α
γβ

βα δ dZCM −≈  (13) 

with 0000 αββα
MM −= . Then, the formula [11]  

 ],,[],[],[],[
0

00

0

*
GMFGFGF β

βα
α χχ−=  (14) 

defines the same Dirac bracket like (9) on the surface (7). This result is due to [5].  

 

4. Irreducible approach to first-order reducible second-class constraints 

A third possibility is to substitute the reducible second-class constraints by some 

irreducible ones and further work with the Dirac bracket based on the irreducible constraints. 

This idea has been inspired by the irreducible approach to first-class constraints and was 

developed in [6,7].  

We start with the matrix of elements  

 ,1

0
1

0

1

1
γ

αα
α

α
γ

AZD =  (15) 

where 1

0

γ

αA  are some functions taken such that  

 .1)(
1

1 MDrank =α
γ

 (16) 

By means of 
1

1
α

γ
D we build the matrix  

 ,
0

0

1

111

1

1

1

0
0000

σ
σ

γ
σγβ

β
λ

λ
λσλσλ ωµ ZDDZM +≈  (17) 

where 
1

1
γ

β
D  stands for the inverse of

1

1
α

γ
D , while 11γβω  is an arbitrary, invertible antisymmetric 

matrix.  

Theorem 1. The matrix of elements 00βαµ  is invertible.  

Proof. The proof is given in [8].  

Theorem 2. The Dirac bracket (14) takes the form  

 ],,[],[],[],[
0

00

0

*
GFGFGF β

βα
α χµχ−=  (18) 

on the surface .0
0

≈αχ  
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Proof. The proof is given in [8].  

The inverse of (17) can be written as  

 
1

001

1

00000

τ

ττρ

ρ

ρτρτρ ωµ AAC +≈  (19) 

where 
11τρω  stands for the inverse of the corresponding upper-indices matrix. Apart from being 

antisymmetric and invertible, the matrix 
11τρω  is arbitrary. In order to endow this matrix with a 

concrete significance, we introduce some new variables 
111 ,...,1)( My =αα  with the Poisson brackets  

 
1111

],[ βαβα ω=yy , (20) 

and consider the system subject to the reducible second-class constraints  

 .0,0
10

≈≈ ααχ y  (21) 

The Dirac bracket on the phase-space described by ( )1, α
α

yz  corresponding to the above second-

class constraints reads as  

 ],[],[],[],[],[],[
1

11

10

00

0,

* GyyFGFGFGF yz β
βα

αβ
βα

α ωχµχ −−=  (22) 

where the Poisson brackets from the right hand-side of (22) contain derivatives with respect to all 

az  and
1αy . After some computation we infer that  

 ,],[],[ *

,

* GFGF yz ≈  (23) 

where *],[ GF  is given by (18) and the weak equality refers to the surface (21). At this point we 

construct the constraints 

 .0~
1

1

000
≈+= α

α

ααα χχ yA  (24) 

After some simple computation, from (24) we infer that  

 ,~,~
0

1

0

1

1

10
0

0

0 ββ
β

α
β

αβα
β

α χχχ ZDyD ==  (25) 

with  

 
1

0
1

1

1

0

0

0

0

0
α

αα
β

β
β

α
β

α
β δ ADZD −= . (26) 

It is easy to see that if (21) hold, then (24) also hold. From (25) we obtain that if (24) hold, then 

(21) hold too, so  

 ,0,00~
100

≈≈⇔≈ ααα χχ y  (27) 

such that the constraints (29) are equivalent to (21). Finally, if we use (27), then the functions 

(24) satisfy  
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 .]~,~[
0000 βαβα µχχ ≈  (28) 

The last relation emphasizes the second-class behaviour of constraints (24).  

Under these considerations, we can prove the following theorem.  

Theorem 3. (i) The second-class constraints  

 ,0~
0

≈αχ  (29) 

are irreducible.  

(ii) The Dirac bracket with respect to the irreducible second-class constraints  

 ],,~[]~,[],[],[
0

00

0

*
GFGFGF ired β

βα
α χµχ−=  (30) 

coincides with (22)  

 ,],[],[ ,

**

yzired GFGF =  (31) 

on the surface 0~
0

≈αχ .  

Proof. The proof is given in [8].  

The last theorem proves that we can approach reducible second-class constraints in an irreducible 

fashion. Thus, starting with the reducible constraints (7), we construct the irreducible constraint 

functions (24), whose Poisson brackets form an invertible matrix. Formulas (23) and (31) ensure 

that  

 ,],[],[ **
GFGF ired ≈  (32) 

so the fundamental Dirac brackets among the original variables az within the irreducible setting 

coincide with those from the reducible version  

 
** ],[],[ ba

ired

ba
zzzz ≈  (33) 

Moreover, the new variables 
1αy  do not affect the irreducible Dirac bracket as from (31) we have 

that 0],[ *

1
≈iredFyα . Thus, the equations of motion for the original reducible system can be 

written as ired

aa
Hzz

*],[≈& , where H  is the canonical Hamiltonian. The equations of motion for 

1αy  read as 0
1

≈αy&  and lead to 0
1

=αy  by taking some appropriate boundary conditions 

(vacuum to vacuum) for these unphysical variables. This completes the general procedure.  

Let us briefly exemplify the general theory on gauge-fixed two-forms, subject to the second-class 

constraints  
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The constraints (34) are first-stage reducible, with the reducibility functions expressed by  
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Acting along the line exposed in the above, we take the matrix 1

0

α

αA  under the form  

 ,
0

0
1
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is invertible. In order to construct the irreducible second-class constraints, we introduce the 

variables  

 ,
1 








=

ϕ

π
αy  (38) 

and take  

 






 −
=

01

10
11βαω  (39) 

As it can be seen, the supplementary scalar fields ( )ϕπ ,  are canonically conjugated, with π  the 

momentum. Then, the irreducible second-class constraints are expressed by  

 ,0
2~

0
≈











∂−∂−

∂−∂−
≡

ϕ
α

ππ
χ

jlj

l

iki

k

A
 (40) 

such that  

 










∆−

∆
=

0

0
00

l
k

j

i

δ

δ
µ βα  (41) 

where l

l ∂∂=∆ . By inverting (41) we obtain that the only nonvanishing irreducible Dirac 

brackets are given by  

 
[ ] [ ]

[ ] ( ),1

2

1
)](),([ 3*

yxyxA l
p

kp
jij

lk
i

iredkl

ij −







∂∂

∆
+= δδδδδπ  (42) 
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where the notation [ ]nii ...1  means antisymmetry with respect to the indices between brackets.  

 

5. Irreducible approach to second-order reducible second-class constraints 

Now, we pass to the case where the second-class constraints are second-order reducible. 

We say that the second-class constraints are reducible of order two if there are some non-

vanishing functions 
1

0
α

α
Z  and 

2

1
α

α
Z  such that  

 ,,...,1,0 110
1

0 MZ == αχαα
α

 (43) 

 ,,...,1,0 221

0

2

1 MZZ == αα
α

α
α

 (44) 

 

where, in addition, all the second-order reducibility functions 
2

1
α

α
Z  are assumed to be 

independent. Along the same line employed at the first-order reducibility case, we construct the 

irreducible second-class constraints 

 ,0~
1

1

000
≈+= α

α

ααα χχ yA  (45) 

 0~
1

2

1

2
≈= αα

α
αχ yZ  (46) 

 

equivalent with (21), so we finally obtain that  

 ,],[],[ ** GFGF ired ≈  (47) 

where in this situation the irreducible Dirac bracket takes the form  

 ],~[]~,[],[],[
0

00

0

* GFGFGF ired β
βα

α χµχ−=  

 ],~[]~,[
2

2

22

1

11

1

0

0
GDAZF βρ

βρ

β
βα

α
α

α χωχ−  

 ],~[]~,[
0

1

0112

1
2

2

2
GZADF ββ

ββαβ

αβ
α

α χωχ−  

 ],~[]~,[
2

2

22

1

112

1
2

2

2
GDAADF λρ

λρ

β
βαβ

αβ
α

α χωχ−  (48) 

 

In formula (48) the quantities 
2

2
β

α
D  stand for the elements of the inverse of  

 ,
2

12

1
2

2
β

αα

αβ
α

ZAD =  (49) 

where the functions 2

1

α

αA  have been chosen such that  

.2)(
2

2 MDrank =β
α
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We observe that the terms from the first-line of formula (48) are due to the contribution of the 

first-order reducibility functions, while the remaining pieces are generated by the existence of the 

second-order reducibility functions. A detailed example regarding the irreducible approach to 

second-order reducible second-class constraints is included within this proceeding volume.  

 

6. Conclusion 

In this talk we proved that first- and second-order reducible second-class constraints can 

be approached in an irreducible fashion by respectively transforming them into an equivalent set 

of irreducible second-class constraints such that the reducible and irreducible Dirac brackets 

weakly coincide.  
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