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Abstract 

An approach of the extended BRST Lagrangean formalism via its equivalence with the Hamiltonian one is 

proposed. This approach will allow a better understanding of the ghost spectrum and of the form of the 

master equations. We will also point out the key role played by the non-canonical operators which appear in 

the Lagrangean context for the gauge fixing procedure. To be more concrete, the case of an irreducible first 

rank theory endowed with a sp (3) BRST symmetry will be considered. 

 

 

1.  Introduction 

 

This paper intends to present a new approach by which one can recover, in a simpler and 

accurate way, the main results of the extended BRST Lagrangean theory on the basis of the 

equivalence between the extended Lagrangean [1] and the Hamiltonian [2] formalisms. 

In the standard BRST approach [3], [4] the two formalisms impose practically similar 

constructs. They ask for minimal sets of ghost-type generators which allow writing down a 

solution of the master equation, but also for a non-minimal sector which have to be used in the 

gauge fixing procedure. When an extended  )1( >nsp   BRST symmetry [5] is implemented, the 

things change and the similarity is broken. The fundamental difference between the two 

formalisms consists in the existence of the single BRST generator, S , but of n antibrackets  

naa ,...,1,)(, =   in the Lagrangean case, and of n BRST generators  },...,1,{ naa =Ω   and a single 

structure of bracket (generalized Poisson bracket) in the Hamiltonian case. In the last case the 

phase space is generated by pairs of canonical variables, ghosts and associated ghost-momenta, 

and on their basis, the extended Poisson bracket is defined [5]. The BRST operators  

},...,1,{ nasa =   are connected with the BRST charges by equations of the form: 

.,...,1],,[ nas aa =Ω∗≡∗       (1.1) 
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In the Lagrangean approach, the similarity with (1.1) should ask for a relation between the 

BRST generator and the  n   different antibrackets of the form: 

.,...,1,),(
?

naSs aa =∗=∗                 (1.2) 

It is well known from the sp(2) BRST Lagrangean [1] approach that the relation (1.2) is 

not valid. The requirement of acyclicity asks for the introduction of same "bar" variables, without 

canonical pairs, variables which generate the apparition of some "non-canonical" operators  Va   

in the master equations. Lagrangean equivalent of (1.1) will be not (1.2) but: 

.,...,1),( naVSs aaa =∗+∗≡∗      (1.3) 

The form of the operators  Va   has been "guessed" in the sp(2) [1] and sp(3) [6] cases. It 

depends on the ghost spectrum, but this one becomes as large as the order of the symmetry 

grows. The non-minimal sector dramatically expand, it too. It is practically impossible to 

maintain the control of the process. To explain the origin of the non-canonical operators  aV   and 

to find a way of determining their concrete form represents two important aims of this paper. We 

will also see the importance of these operators in the gauge fixing process and we will propose a 

manner of controlling the extension of the ghost spectrum, so that to maintain it at the minimal 

necessary structure. More precisely, we will derive the form of the master equations in the 

Lagrangean context starting from the Hamiltonian one. We will use three important assets:  

(i) a bi-graduation defined by the ghost number (gh) and the level number (lev) [7] can be 

used, and the variables with the same bi-degree in the two formalisms can be identified; 

(ii) the action of the BRST operators is the same on the common ghost-field spectrum in the 

two approaches; (iii) in the Lagrangean approach, the Koszul differentials  aδ   can be 

split in two parts: a canonical part, with a non-trivial action on the antifields with 

canonical conjugates only, and a "non-canonical" part acting on the single "bar" variables: 

)()( nc

a

can

aa δδδ +=        (1.4) 

The previous decomposition induces a similar one at the level of the whole BRST operator: 

)()( nc

a

can

aa sss +=       (1.5) 

The supposition (ii) from behind is based on the remark that the field-spectrum in the 

Lagrangean and in the Hamiltonian constructions are practically the same. The third supposition 

does not refer to the Hamiltonian approach which implies canonical pairs of variables only, so 
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that the non-canonical operators loose here any sense. Moreover, because of in the Hamiltonian 

theory two important problems have been solved: how to introduce in a natural way the non-

minimal sector [7] and how to choose the gauge fixing term [8]. These are problems which when 

we try to built the Lagrangean covariant formalism, we are faced with major difficulties. All 

these represent important arguments which suggest that, despite its luck of covariance, it is more 

convenient to work in the Hamiltonian frame and to obtain the Lagrangean formalism on the 

basis of the equivalence between the two. 

We will try to prove this assertion and to recover some basic results concerning the sp(3) 

theory. To be more concrete, we will restrict ourselves to the study of the irreducible first class 

models. The paper is structured in four parts. After this introduction, in the second section we 

will briefly review some known results on the Lagrangean and, respectively, Hamiltonian BRST 

extended formalisms. The third section will contain the core of the paper and it will effectively 

use the equivalence between the two formalism in order to give important details on the main 

equations and quantities appearing in the sp(3) Lagrangean approach. We will emphasis the key 

role of the bar" antifields associated to the Lagrange multipliers in the gauge fixing procedure. 

Some concluding remarks will end the paper. 

 

2. Basic results on the extended BRST theories 

 

Let us consider a gauge theory described by the Lagrangean action  ][0

iL
qS  , where  

},,1,{ riq i
L=   represents the set of all fields of the theory. The action is invariant in respect 

with the gauge transformations 

.,,1;][ mqRq
ii

L== αεδ α
αε       (1.6) 

In the BRST Lagrangean approach, starting from this action one obtains the solution  S
L

  of the 

master equation and the path integral  ,L

YZ   by an adequate gauge fixing procedure. 

In the Hamiltonian case a theory with constraints corresponds to a gauge theory. It is 

described by an Hamiltonian  ),(0 i
i

pqH   and by a set of the constraints  

},,1;,...,1;0),({ mripqG i

i
L=== αα  . We will refer in this paper to the case of an irreducible 

theory with first class constraints, case in which the extended Hamiltonian  )0(H   has the form 

.),(),,( 0

)0(

α
α
GupqHupqH +=     (1.7) 
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The algebra satisfied by the constraints is given by: 

β
β

ααγ
γ

αββα GVGHGfGG == ],[;],[ 0          (1.8) 

and we assume that the structure functions  γ
αβf   and  β

αV   are constants. The canonical action 

will be   .,,1)];,,([],,[ )0(
.

riupqHpqdtupqS i

i

c L=−= ∫      (1.9) 

The action (1.9) is invariant under the gauge transformations  

α
αε

α
αε εδεδ ],[;],[ GppGqq ii

ii ==      (1.10) 

.
.

βγα
βγ

βα
β

α
α

ε εεεδ ufVu +−=      (1.11) 

The main problems of the Hamiltonian approach consist in determining the form of the BRST 

symmetry, given as a differential operator or as a canonical charge, as well as of the gauge fixed 

Hamiltonian which observe this symmetry. When a sp(3) symmetry  }3,2,1,{ =asa   is 

implemented, it can be built in an extended phase space generated by the following set of 

canonical conjugate variables: 

}.,,,{};,,,{ ααα
ααα ηλππ aai

iaa QqQpPP =≡ A

A
   (1.12) 

The master equations which allow us to determine  sa   or the corresponding charges  aΩ   are: 

3,2,1,0],[;0 ==ΩΩ=+ assss baabba      (1.13) 

The concrete forms of the BRST charges are in this case: 

+++=Ω ba

bc

c

b

cabcba

b

a QQPfPQG δλεδ αβ
γ

γ

αβ
α

α
α

α
2

1
 

+ +++ ea

edc

bbcdba

bc

caa QQQffQf δπεδλπηπ σβα
γ

γ
θβ

θ

σα
αβ

γ

γ

αβ
α

12

1

2

1
  (1.14) 

.3,2,1,)(
12

1

2

1
=+++ aQQffffQf ba

bcc

ba

b δλπδηπ σβα
γ

γ

θα

θ

βσ

γ

θβ

θ

ασ
αβ

γ

γ

αβ  

 A way of passing towards a Lagrangean approach is given by the fact that in (203) the momenta  

},,1,{ rip i
L=   can be seen as auxiliary variables and, therefore, can be eliminated on the basis 

of their equations of motion. One obtain at the end the action  

).,,(],[
.

00 uqqLdtuqS ∫=       (1.15) 

In this case, the relations (1.10), (1.11) become:  
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βγα
βγ

βα
β

α
αα

α εεεδεδ ufVuuqqaq
ii +−==

..

;),,(    (1.16) 

and the Noether's identities will take the form 

.0)(][ 000 =−+−+
β

γα
βγ

α
βαβ

δ

δ

δ

δ

δ

δ

u

S

dt

d
ufV

u

S
a

q

S i

i
    (1.17) 

In the sp(3) case, the Lagrangean formalism allows to obtain the solution of the master equation: 

3,2,1,0),(
2

1
==+ aSVSS aa       (1.18) 

As a very important remark, we have to mention that this extended space is generated by the 

same set of fields as in the Hamiltonian approach: 

},,,,{},,{},{ αααααα ηλ aaiAi QquQquQu ==A .  (1.19) 

A key role is played by the antifields associated with the Lagrange multipliers. This can be 

identified with the ghost-momenta [8]. The differences start when the total antifield spectrum is 

compared with the ghost-momenta given in (1.12). The existence of 3 antibrackets will ask for 

the introduction of three different sets of antifields, { ∗

AaQ , a=1,2,3}conjugated with }{ AQ  from 

(1.19) in respect with each antibracket,  1=a  ,  2=a   and respectively  3=a  . So, the extended 

configuration space adequate for implementation of the extended sp(3) BRST will be generated 

by:   *{ , , , , 1,2,3}.A
Aa Aa A

Q Q Q Q a
− −

=      (1.20) 

 The gauge fixing procedure in the extended Lagrangean formalism [1], [6] supposes the 

introduction of the non-minimal sector, fact which will determine an extra-extension of the 

generators' spectra.  

        Remark 1: Considering the action (1.15), the solution of (1.18) will start as:  

+=
−−−

∗∗∗ ],[],,,,, ,,,[ 0 uqSQuqQuqQuqS
E  

+++−++ ∗∗∗

∫
ba

ab

aaa

a

ai

ia QQQfQufQVQuQaqdt βγ
α

α
βγ

βγα
βγ

βα
β

α
α

α
α (

2

1
)((

.

 

...).) +++ ∗∗ ba

ab

ba

ab QQ
βγ

α
βγ

α ηηλλ  

Remark 2: A very useful tool in the construction of the Lagrangean formalism will be the 

structuring of the configuration space using the same rules as we proposed for the Hamiltonian 

approach. It will be based on a double graduation following the ghost number, gh , and the level 
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number,  lev  . This graduation will allow the identification of the generators and will smooth the 

transfer process from the Hamilton to Lagrange. 

 

3. From Hamilton to Lagrange 

 

The study of the equivalence will impose the identification of the action of the BRST 

operators, Hamiltonian  }3,2,1,{ =as
H

a   and Lagrangean  }3,2,1,{ =as
L

a  , on the common fields  

},{ Ai QqQ =A  : 

AA

QsQs
L

a

H

a =        (1.22) 

where  Q
A

 represents the set of the ghosts, set which in the  )3(sp   case is given by (1.19). 

As a general rule, the proof of the equivalence between the two formalisms imposes the 

following steps: 

1) to obtain the antifield spectrum, the proper solution of the BRST generator  S   and the 

concrete form of the non-canonical operators  Va   specific for the Lagrangean formalism, 

knowing the expression of the BRST charges  aΩ   and using the relation (1.22). 

2) to recover the main quantities of the Hamiltonian formalism on the basis of a Lagrangean 

annalysis of the action obtained after eliminating the original momenta  },,1,{ rip i
L=  , and 

considering the Lagrange multipliers as usual fields in the canonical action. 

In this paper we are interested to follow the first step only and we will do it considering the case 

of an irreducible first rank gauge theory described by the canonical action (1.9).  

It is remarkable that, following the ansatz (i) from the introduction concerning the bigraduation 

(gh, lev ), we can transfer the ghost-momenta from Hamiltonian approach as antifields associated 

with Lagrange multipliers in Lagrangean one:  

)3,3()3,3()4,2()4,2()1,1()1,1(

,,

−−−−−−−−−−
∗

−−

≡≡≡ αααααα ππ uuuP

a

a

a

a

a

a

a

a     (1.23) 

This identifications suggests the possibility of extending (1.22) with  

.,, αααααα ππ ussussusPs
L

b

H

ba
L

ba

H

ba

L

ba

H

b === ∗   (1.24) 

We observe that: (i) each ghost-momentum }{ απ which is not affected by the )3(sp index is in 

correspondence with the new bar antifield  }{ αu ; (ii) the antifields }3,2,1,{ =au aα   are in 
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correspondence with the ghost-momenta  }3,2,1,{ =aaαπ  . These correspondences are established 

following the Grassmann parity and the bi-graduation ),( levgh .  

For recovering the Lagrangean formalism from the Hamiltonian one, we start from the 

expressions of the BRST charges (1.14) and we will assume that the relations (1.22) and (1.23) 

are observed. We are interested in recovering: (a) the antifields spectra, generators of the Koszul-

Tate tricomplex; (b) the  )3(sp   BRST generator (1.14) and (c) the form of the master equations 

used in the Lagrangean  )3(sp   BRST approach. The term from the left hand side of (1.22) has 

the form   ],[ a

H

a QQs Ω≡ AA       (1.25) 

Conclusion 1: Our approach of the equivalence between the )3(sp BRST  

 Hamiltonian and Lagrangean formalisms allowed to recover and to justify the structure of the 

configuration space in the )3(sp antibracket-antifield formalism. 

The natural question which appear in this moment is connected with the action of the BRST 

operators { 3,2,1, =asa  } on the bar antifields which do not have canonical conjugate pairs? It 

is clear that for these variables the relation (1.25) is not true. So, we will decompose the BRST 

operators after the resolution degree (res). It is defined as being 0 for ghosts and “-gh” for ghost-

momenta. The decomposition will have the form:    

ksresssdss
k

aaaaa

k

a

k

a =++++==
−∞

−=

∑ )( , 
)()2()1()0()1()(

1

Lδ   (1.26) 

We will have in mind from now on the graduation (res,lev) of the ghost-momenta  

)4,2( −

=
a

aππα        (1.27) 

The relation 

=+++=
−−−−− )4,2()1,1()1,0()1,1(

)(
a

ab

a

a

a

a

a

aba sds πδπα L  

++=
−−−

ca

a
c

b

b

c

cabc QfP δπε β
α

γ
αβα

)1,0()4,2()1,1(

2

1
   (1.28) 

ca

c
c

b
b

QQffff δπ σβ
γθα

γ
βσ

θ
θβ

γ
ασ

θ
)1,0()1,0()3,2(

)(
12

1 −−−

++    

leads to the conclusion that:  

bacP
c

cabc

b

ab

a

a −−==
−−−−

6, 
)1,1()4,2()1,1(

αεπδ      (1.29) 
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.)(
12

1

2

1
 

)1,0()1,0()3,2(

)1,0()4,2()4,2()1,0(

ca

c

c

b

b

ca

c

c
b

b

b

ab

a

a

QQffff

Qfd

δπ

δππ

σβ
γθα

γ
βσ

θ
θβ

γ
ασ

θ

β
α

γ
αβ

−−−

−−−−

++

+=

      (1.30) 

On the basis of this relations and using (1.24) and the identifications (1.23) we obtain 

=≡+++=
−−−−−

b

H

a

b

b

a

a

a

a

a

ab
L

a susdus ααα πδ
)4,2()1,1()1,0()1,1(

) ( L  

ca

c

c

b

b

ca

c

c
b

bc

cabc

QQuffff

Qufu

δ

δε

σβ
γθα

γ
βσ

θ
θβ

γ
ασ

θ

β
α

γ
αβα

)1,0()1,0()3,2(

)1,0()4,2()1,1(

)(
12

1

2

1

−−−

−−−
∗

++

++=

  (1.31) 

The last relation leads to 

)1,1()4,2()1,1(

 
c

cabc

b

b

a

L

a uu
−
∗

−−−

= αα εδ      (1.32) 

.)(
12

1

2

1
 

)1,0()1,0()3,2(

)1,0()4,2()4,2()1,0(

ca

c

c

b

b

c

ca

c

b

b

b

b

a

L

a

QQuffff

Qufud

δ

δ

σβ
γθα

γ
βσ

θ
θβ

γ
ασ

θ

β
α

γ
αβα

−−−

−−−−

++

+=

  (1.33) 

Similarly we obtain 

)4,2()3,2()1,1(

 

−−−−

=
b

bab

a

L

a uu αα δδ      (1.34) 

.
2

1
 

)1,0()3,3()3,3()1,0( −−−−

=
c

ca

c

a

L

a Qufud δβ
α

γ
αβα     (1.35) 

In conclusion, the Koszul operators can be decomposed in a canonical part and a non-canonical 

part:  ∗+∗≡∗+=∗
= aghosturia

nc

a

can

aa VS
0

),()( δδδ    (1.36) 

The relation (1.36) implies the decomposition of the BRST operators as: 

∗+∗≡∗+=∗ aa

nc

a

can

aa VSsss ),()(     (1.37) 

The canonical part of the BRST operator has non-trivial action on the pairs of conjugate variables  

{ }∗
Aa

A
QQ ,   and it is expressed by the antibrackets 3,2,1,),( =aa . By contrary, the non-

canonical operators   Va  have non-trivial action on the “bar” antifields  { }3,2,1, =aQ
Aa

  and  

}{
A

Q  only: 0,0;0;0),( ≠≠≡≡∗ ∗

AaAbaAbaaA
QVQVQVQ    (1.38) 

The BRST variation of the }{ AQ  fields can be expressed now by  
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A

aa

AAnc

a

can

a

AL

a QVSQQssQs +≡+= ),()(    (1.40) 

where  .,),( ∗≡∗∗=∗ a

nc

aa

can

a VsSs      (1.41) 

So, our approach of the equivalence between the two formalisms allows us to obtain the 

usual form of the action of BRST operators on the fields which appear in the )3(sp   antibracket-

antifield formalism. We pass now to the next aim of the paper:  to obtain the concrete form of the 

master equations. We know that in the Hamiltonian formalism we have: 

L+=Ω= cabcabb

H

a Ps ααα εππ ],[     (1.42) 

L+=Ω= baba

H

as ααα πδππ ],[      (1.43) 

Similarly, in the Lagrangean formalism we obtain  

.),(

),(

)38.1(

)38.1(

αααα

αααα

uVuVSuus

uVuVSuus

aaa

L

a

babaabb
L

a

=+=

=+=
    (1.44) 

From relations (1.32), (1.34) and (1.44) we could identify  

., babacabcba uuVuuV αααα δε == ∗     (1.45) 

A possible solution for the non-canonical operators  aV  ,  3,2,1=a  which satisfy (1.45) is 

.3,2,1 , =∗+∗=∗ ∗
a

u
u

u
uV bab

b
cabca

α

α

α
α

δ

δ
δ

δ

δ
ε   (1.46) 

We will extend this result for all the antifields and we will consider aV  of the form 

3,2,1 ,)()( )()( =∗−+∗−=∗ ∗
a

Q
Q

Q
QV

A

Abab

Q

Ab

R

Acabc

Q

a

AA

δ

δ
δ

δ

δ
ε εε  (1.47) 

with the properties 

.3,2,1,,0,0 ==+=+ baVVVVVV abbaabba δδ    (1.48) 

From nilpotency condition for L

as  expressed by (1.37) we obtain the form of the master equations 

.3,2,1 ,0),(
2

1
==+ aSVSS aa      (1.49) 

Conclusion 2: The action of the BRST operators on the generators of the extended space in the 

two formalisms, Hamiltonian and Lagrangean, has the form 

aaa

b

a

b

a

b

a

b

a

i

a

i

SS

SQQSqq

),(],[;),(],[ 

),(],[ ;),(],[

αααα

αα

ηηλλ =Ω=Ω

=Ω=Ω
   (1.50) 
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L+=Ω ∗
abab SuP ),(],[ αα      (1.51)                                                           

.],[;],[ LL +=Ω+=Ω αααα ππ uVuV aabaab    (1.52) 

Conclusion 3: The non-canonical operators which appear in a natural way in the theory can be 

used in the gauge fixing procedure. How to implement this original gauge fixing procedure will 

represent the aim of a forthcoming paper. 

 

4. Concluding remarks 

 

The study of the equivalence between the Lagrangean and Hamiltonian formalisms in the 

BRST theory seems to be not a formal problem, but an important manner of understanding the 

theory itself. What is the significances of the non pairs variables, what is the complete action of 

the BRST operators, what non-canonical part appears in the master equations, what is the 

importance of the non-canonical operators from the master equations are some of the problems to 

whom our comparative study of the two formalisms offered clear answers. 

 

References 

[1] I.A. Batalin, P. M. Lavrov, I.V. Tyutin, J. Math. Phys.31, (1990) 1487 ;  

[2] I.A. Batalin, P. M. Lavrov, I.V. Tyutin, J. Math. Phys.31, (1990) 6 

[3] C. Becchi, A. Rouet and R. Stora, Phys. Lett. B52, 344 (1974); C. Mat. Phys. 42,127 (1975); 

[4] I. V. Tyutin, Lebedev Preprint 39 (1975), unpublished; 

[5] R. Constantinescu, C. Ionescu, Int. J. of Mod. Phys. A Vol. 21, No. 7 (2006) 1567 

[6] C. Bizdadea, S. O. Saliu, Phys. AUC 12 part III (2002) 150 

[7] R. Constantinescu, J. Math. Phys. 38 (1997) 2786 

[8] R. Constantinescu, C. Ionescu, Int. J. of Mod. Phys. A Vol. 21, No. 32 (2006) 6629 

 


