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Abstract: It is proposed a theoretical approach for magnons at finite temperature in a single-domain 
nanoparticle. Due to the spin wave quantization, the magnons have a finite spectrum, depending on the 
type, size and shape of the nanoparticle. The thermal fluctuations of the environment  - considered as a 
thermal reservoir – is considered to be the cause of the nanoparticle nonequilibrium behavior, 
especially of the magnetization. 
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 1. Introduction  

The single-domain magnetic nanoparticles were intensively studied in the last decades, 

mostly as components of a system (e.g. ferrofluid or magnetic composite). An interesting 

physical property which appears in such a system at nonzero temperature is the 

superparamagnetism. The first interpretation of this phenomenon was given by Néel, based on 

the behavior of the magnetization vector M of a single-domain nanoparticle, whose uniaxial 

anisotropy determines an internal magnetic potential, consisting of two minima separated by a 

barrier. Néel affirmed that, due to thermal agitation, M could surmount the potential barrier 

and move from one minimum to another; this happens even in the absence of an external 

magnetic field favorable to lower the barrier. Developing this idea, most of the theoretical 

approaches treated the single-domain nanoparticle as if it has a single magnetic moment and 

M is considered to obey a phenomenological equation of damped precession of Landau-

Lifshitz or Gilbert type. The first model, based on the solving of the Fokker-Planck equation 

for M of an assembly of nanoparticles, in order to find the damping constant, is due to Brown. 

It was followed by many others which use similar methods. 

          Here is presented a new approach for the magnetization behavior: a model based on the 

nonequilibrium theory for the magnons in a single-domain magnetic nanoparticle with 
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uniaxial anisotropy. The environment is considered as a thermal reservoir which, due its 

fluctuations, determines nonequilibrium states in the magnon system. Using the evolution 

equation for the statistical operator, it is deduced an expression for the time-dependent 

magnon number. A simplified model, similar to the Einstein model for phonons, is then 

introduced. 

 

 2. The Theoretical Framework  

This paper starts from the observation that a single-domain nanoparticle, containing a 

relatively small number of spins (~104), is a so-called mesoscopic system, too small to have 

equilibrium thermodynamic properties. On the other hand, the well-known quantum theory of 

a bulk (macroscopic) magnetic insulator (having enormous number of spins) provides 

successfully that its equilibrium properties at finite temperatures, especially the 

magnetization, are determined by the quantized spin waves or magnons, which are thermally 

generated by the contact of the system with a thermal reservoir and due to the specific 

interactions among lattice spins (exchange, dipole-dipole etc.). Therefore, this nanoparticle is 

much more sensitive to the fluctuations of the thermal reservoir, but its magnetic behavior 

may be somewhat similar to the equilibrium case of the macroscopic system. Consequently, in 

this work it is proposed a nonequilibrium magnon theory for the magnetization evolution in a 

single-domain insulator nanoparticle at finite temperatures. This approach has two main ideas, 

partly similar with those of the macroscopic theory. Firstly, the magnons do not a priori exist 

in an insulator magnetic system; they are quantas of spin waves thermally generated in it by 

the contact with the environment (considered as a thermal reservoir) due to all the spin-spin 

quantum interactions. But in the same time, the thermal contact allows the reservoir 

fluctuations to influence the system; if the system is macroscopic, this influence is negligible, 

but in a nanoparticle it may be of crucial importance, determining a nonequilibrium behavior. 

Secondly, all the magnetic properties of the system, especially the magnetization, are 

determined only by the magnons; for a macroscopic system, these properties are typical of 

equilibrium and are constant in time, but for a nanoparticle, they characterize nonequilibrium 

and depend of time. The Hamiltonian of the magnon system A within the nanoparticle, 

denoded by HA, describing the spin-spin interactions in the absence of the external magnetic 

field, is considered to be 
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 where the angular brackets denote neighboring spins. In order to avoid confusions, all the 

operators are written with hats. Hex is the exchange Hamiltonian and Han is an effective 

Hamiltonian representing both the magneto-crystalline and dipole-dipole anisotropic 

interactions The resulting anisotropy is considered uniaxial, defining the oz axis;  the 

nanoparticle shape is considered to posses a cylindrical symmetry around the magneto-

crystalline anisotropy axis. Using the well-known Holstein-Primakoff formalism - which is 

entirely linear, neglecting the magnon-magnon interaction - this Hamiltonian may be finally 

written in the second quantization 

 
where a+

q and aq are respectively the creation and annihilation operators for the quantized spin 

waves or magnons with q wavevector. The general energy spectrum of 

these magnons is given by the dispersion relation 

 
The kinetic energy of magnons, in the case of a simple cubic lattice it is given by 

 
where the first expression corresponds to the ferro- and ferrimagnetic-, and respectively the 

second to the antiferromagnetic insulators. The potential energy of magnons determined by  

the uniaxial anisotropy, also in the linear approximation, is 

 
where K is the effective anisotropy constant and N  is the number of spins in the nanoparticle. 

On the other hand, it is very important to remember that the quantization of spin waves must 

be made in the small nanoparticle. Considering periodic boundary conditions, this implies, as 

is well known from quantum mechanics, only standing spin waves. The smallest wavelength 

is assumed to be equal to the lattice constant a. Similarly to Debye model for phonons, 

magnon wavelengths shorter than a are considered meaningless; in this way, the magnon 

energy spectrum becomes superiorly limited. It is also assumed that the spin waves propagates 
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only on the crystallographic axes (chosen to be ox,oy,oz for the cubic lattice), due to the 

relatively small number of spins on each direction. The assumptions above represent selection 

rules for magnon wavevectors and energies, depending obviously on the chemical structure, 

size and shape of the nanoparticle. Consequently, the magnon energy spectrum is discrete and 

finite. It is very restricted compared to the continuum spectrum in the bulk case, where 

quantization is made on a huge number of spins; this fact marks a very important difference. 

Also, the magnon wavevectors, considered with directions on the crystallographic axis, have 

discrete magnitudes given by 

 
L is the greatest dimension of the nanoparticle, obviously on the oz axis, and a is the lattice 

constant; usually L~10 a. The operators for magnon numbers, defined by the relations 

 
do not depend on the representation type and are constants of the time evolution. In order to 

calculate every average, it is necessary to know the statistical operator of the magnon system 

A.  Its time dependence is the key of the nonequilibrium behavior of the magnon system, and 

is caused, as it was emphasized in the introduction, by the thermal reservoir fluctuations. 

Consequently, the average magnon numbers are time-dependent 

 
Like in the magnon theory for macroscopic systems, the magnetization of the 

nanoparticle M has a component on the oz axis defined by the relation 

 
and is obviously time-dependent because of the magnon number. M is the spontaneous 

magnetization at T=0 (where the magnons do not exist), V is the volume of the nanoparticle 

and the constant is γ=gµB, with g the gyromagnetic factor and µB the Bohr magneton. 

 Using nonequilibrium statistical methods, one may find the time-dependent 

expressions of the total number of  magnons, the magnetization and the energy  
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Here t0 is the initial time, NA

q(t0) is the initial number of magnons with q wavevector and ωq,  

NB
k is the number of reservoir quantas with k wavevector and frequency Ωk.  

 

 3. Conclusions.  

The behavior of the nanoparticle, especially its magnetization, may be explained with 

the nonequlibrium theory of magnons. They are thermally generated in the nanoparticle due 

the contact with the environment, considered to be a thermal reservoir.  Using the 

nonequilibrium statistical methods, one may calculate the expression of total magnon number, 

magnetization and magnon energy; they all have a periodic time-dependence. This may 

suggest that the superparamagnetism is caused by this periodic motion of the magnetization. 
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