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Abstract: 
We consider a two dimensional lattice of quantum dots, under the presence of a perpendicular magnetic 
field and an external electric field oriented along one of the symmetry directions of the lattice. We 
calculated the electronic spectrum of this lattice in the Hall configuration under a single magnetic-band 
approximation. By choosing the Landau gauge , a single particle Hamiltonian was formulated, and its 
eigenfunctions were obtained as appropriately symmetrized, magnetic field- dependent Bloch functions. 
In the end we achieved a Harper’s equation and we calculated the transfer matrix of this equation. 
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 1. Introduction 

 The motion of electrons in two dimensional systems, under the influence of both a 

periodic potential  and  external fields has been of interest to theorists and experimentalists 

very much.[1-6]. In the present paper we modeled a two dimensional lattice of cylindrical 

quantum dots, by a three dimensional potential, an external perpendicular magnetic field and 

an electric field which is applied along z direction. We will assume that the electrons in the 

dot are confined by a very narrow quantum well along the z direction. Therefore, we 

obtaining a periodic effective potential, depending only on the coordinates over the plane of 

dots. 

  

 2. Harper equation 

 We consider a two dimensional lattice of quantum dots under the influence of a 

potential V, which is periodic over the plane of the dots: 

 ( ) ( )zVzV n ,, d+= θθ                                                        (1) 

where: ( )yx,=θ  - is the dots plane and: 

( )dndn yxn ,=d  
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where d is the lattice constant. This potential is given by: 

  ( ) ( )22

, 2
1 dnmV

yx
neff α

α

αωθ −=− ∗

=
∑d   ,   

2
ddn ≤− αα                   (2) 

In this equation ∗m   is the effective mass over the plane, and ω   is the quantum dot 

geometric frequency, which is characterized by the length scale: 

  ω∗= ml punct
h                                                         (3) 

The electric field is applied along one of the symmetry directions  of the lattice, F=xF; 

and the magnetic field is applied normal to the plane of dots  B=zB . The magnetic field will 

be included through the vector potential in the Landau gauge. In this gauge the Hamiltonian 

preserved the translational symmetry of the periodic potential, along the direction 

perpendicular to the electric field. The single-particle Hamiltonian for the quantum dot array 

is 

  ( )
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    (4) 

 As translational invariance along the y direction is preserved, eigenfunction and 

energy eigenstates are characterized by fixed values of  yk  : 

  ( ) ( ) ( )θθθ
yyy kkk EH Ψ=Ψ                                                  (5) 

Applying the Bloch’s theorem, the eigenfunctions of the Hamiltonian can be writen: 

  ( ) ( )θθ ν

y

y

y k
ik

k ue=Ψ                                                      (6) 

where  ( )θ
yku  is a periodic function along y direction:  

 ( ) ( )θθ
yy kk udu =+ ŷ                                                       (7) 

and it can be expressed in terms of Wannier functions  [7]: 

 ( ) ( ) ( ) ( )nynynk Wdny
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ddA
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By inserting Eq. (8) in Eq . (6) , we obtain another equation for the eigenfunctions : 

 ( ) ( )( ) ( )nnn
dnik

nk W
c
eieC yy
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dddA
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⎠
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⎜
⎝
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exp         (9) 

and substituting this equation in Schrodinger Eq. (5) we have the corresponding eigenvalue 

for the periodic function: 



 20
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 Let us apply a discrete translation  qdTx̂   to the previous relation, where T denotes the 

operator of discrete magnetic translations : ( ) ⎥
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The resulting expression is: 
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( ) ( )qduqeFdE
yy kk x̂+−= θ  

 If  φN    is a rational number  
q
pN =φ  then  φ

π N
d

qkk yy ⎟
⎠
⎞

⎜
⎝
⎛+=

2   is associated to the 

same magnetic Bloch function as yk , as a consequence of the translational symmetry along 

the y direction. Therefore:    

                                   
yy kk EE =                                                             (12) 

The Eq.  (11) is  : 
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and the conclusion is that, if 
ykE   is an eigenvalue belonging to the electronic spectrum, then   

qeFdE
yk −  is another eigenvalue corresponding to the same value of yk  . 

 In this paper we choose W  as eigenfunctions of a single-dot Hamiltonian: 

  ( ) 22
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and we will approximate the Wannier functions by the lowest energy eigenstate, which is 0Φ  

[8]: 
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Therefore, the Eq. (9) become : 
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We will insert the last equation in the Schrodinger Eq . (5) : 
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which can be writen as: 
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 The expression inside the parentheses can be write in terms of the single-dot 

Hamiltonian: 

( )( ) ( ) ( )[ ] ( ) 0exp 0 =−Φ−+−Δ+−⎟
⎠
⎞

⎜
⎝
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where:  

        ( ) ( ) ( )∑ −−−≡−Δ
∗

n
nneffn

mVV 22

2
ddd θωθθ        (20) 

Since 0Φ  is an eigenfunction of punctH   with eigenvalue  Ω , we have : 

  ( )[ ] 0=−+−Δ+Ω∑ nkn
dnik

n y

yy

n

x
EeFxVeC dd

d

θθh                (21) 

where we adopted the Dirac’s notation: 

  ( )( ) ( )nnnn c
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⎠
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⎜
⎝
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h
            (22) 

To determine the coefficients 
xnC   in the last equation we take the internal product with 

the function θn′d : 
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 ( ) ( )[ ] 0=+−Δ+−Ω ′′′∑ nnnnnnnk
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In the tight-binding approximation, Eq  (32) become:: 
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and Te is a function belonging to the matrix elements corresponding to the periodic potential 

V. This equation  is the Harper equation, which determines the energy spectrum. 

  

 3. The transfer matrix 

 The Harper equation (24) can be expressed in an matricial form [1]: 

  
xxx nnn T Ψ=Ψ +1                                                          (26) 

where :   
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and   

( ) ( )
⎟
⎟

⎠
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⎛ −++−=
01

12cos2dim
dim M

eFdndknNEET xyxa
anx

φπ                    (28) 

is the transfer matrix. Because both 
xnC  and qnx

C +   are solutions of the Harper equation (24) 

we have :                                          
x

q

x n
i

qn CeC α=+  

 We starting with 0Ψ   and applying the equation  (26)  : 

  ( ) 0dim Ψ=Ψ aqq EM                                                      (29) 

where :   

( ) ( )∏
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must be a unity matrix. Under this condition we have : 1
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0
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0 −Ψ+Ψ=Ψ qq
i MMe qα  
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and                                    1
22

0
21

1 −− Ψ+Ψ=Ψ qq
i MMe qα  

which has nontrivial solution if we have: 

  02221
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−
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q

q

i
qq
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                                           (31) 

The trace of  the M matrix must be a real number : 

02112 == qq MM                                    qi

q
q e

M
M α±== 22

11 1  

Therefore, we have:                   ( ) ( )qaq EMTr αcos2dim =                                   (32) 

which become :                                       ( ) 2dim ≤aq EMTr  (33) 

 The equation (33) determines the electronic spectrum of the Harper equation. 

 

 4. Numeric result 

 We present results for a two dimensional array of quantum dots with ldot =30 A and 

lattice constant d=100 A. We assumed  the effective mass =0.067. Fig.1. shows the energy 

spectrum as a function of  yk . One can see that the band has been split into exactly q=3 

subbands. In fig. 2. we have the same results for p=1, q=4. 

 
Fig. 1. Energy spectrum for the system, for p=1 , q=3 , ldot=30 A, d=100 A 
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Fig. 2. Energy spectrum for the system, for p=1 , q=3 , ldot=30 A, d=100 A 

 

 5. Conclusions 

 We have studied the energy spectrum of electrons in a two dimensional lattice of 

quantum dots, subject to an perpendicular magnetic field and an electric field , applied along 

one of the symmetry directions of the array. The magnetic field is not treated as a perturbation 

to the band structure, and the external electric field is not included in the wave, its effects are 

calculated by direct diagonalization of the Hamilton. Despite the approximations involved in 

this paper ( tight-binding, single-band) this method for constructing magnetic Bloch-like 

functions in the Landau gauge is fairly general. 
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