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Abstract:

We consider a two dimensional lattice of quantum dots, under the presence of a perpendicular magnetic
field and an external electric field oriented along one of the symmetry directions of the lattice. We
calculated the electronic spectrum of this lattice in the Hall configuration under a single magnetic-band
approximation. By choosing the Landau gauge , a single particle Hamiltonian was formulated, and its
eigenfunctions were obtained as appropriately symmetrized, magnetic field- dependent Bloch functions.
In the end we achieved a Harper’s equation and we calculated the transfer matrix of this equation.
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1. Introduction

The motion of electrons in two dimensional systems, under the influence of both a
periodic potential and external fields has been of interest to theorists and experimentalists
very much.[1-6]. In the present paper we modeled a two dimensional lattice of cylindrical
quantum dots, by a three dimensional potential, an external perpendicular magnetic field and
an electric field which is applied along z direction. We will assume that the electrons in the
dot are confined by a very narrow quantum well along the z direction. Therefore, we
obtaining a periodic effective potential, depending only on the coordinates over the plane of

dots.

2. Harper equation
We consider a two dimensional lattice of quantum dots under the influence of a

potential V, which is periodic over the plane of the dots:
V(6,z)=V(0+d,,z) (1)
where: 6 = (x, y) - is the dots plane and:

d, = (nxd,n d)

y
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where d is the lattice constant. This potential is given by:

4

(0-d,)=> %ma) (@-n,d) , |la-n d|<% )

a=x,y
In this equation m"~ is the effective mass over the plane, and @ is the quantum dot

geometric frequency, which is characterized by the length scale:

N G)

The electric field is applied along one of the symmetry directions of the lattice, F=xF;
and the magnetic field is applied normal to the plane of dots B=zB . The magnetic field will
be included through the vector potential in the Landau gauge. In this gauge the Hamiltonian
preserved the translational symmetry of the periodic potential, along the direction

perpendicular to the electric field. The single-particle Hamiltonian for the quantum dot array

(p L€ A(H)jz

1S

H@)=~—2 z o (0-d,)+eFx (4)

As translational invariance along the y direction is preserved, eigenfunction and

energy eigenstates are characterized by fixed values of &, :
H (9)‘1115, (9) = Eky ‘Pky (‘9) (%)
Applying the Bloch’s theorem, the eigenfunctions of the Hamiltonian can be writen:
lPk_v (‘9) = eik'vvuk}, (‘9) (6)
where u, (6) is a periodic function along y direction:

U (0+dy)= U ©) (7

and it can be expressed in terms of Wannier functions [7]:

_ dz c, exp[— i(ky + h—ecA(dn )j(y - nyd)j we-d,) (8)
By inserting Eq. (8) in Eq . (6) , we obtain another equation for the eigenfunctions :

-¥, e exp[_% @ Yo-d )j w(o-d,) ©)

and substituting this equation in Schrodinger Eq. (5) we have the corresponding eigenvalue

for the periodic function:
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2
[p + ik, + A(H)j
C

kS

+ Vo (0-d,)+eFx fu, (0)=E, u, (0) (10)

2m

Let us apply a discrete translation T, , to the previous relation, where T denotes the

d
operator of discrete magnetic translations : 7, (dn ) = exp{— lh” (p + EAH
c

The resulting expression is:

2
(p + yh(ky + Z;W N¢j + & A(G)J

2m”

+ 2V, (0-d,)+eFx fu, (0+3qd)= (11)

= (Ek - qud)ukv (0 +xqd )

If N, isarational number N, = 2 then /;y =k, +(277ZQJN 4 1s associated to the
q )

same magnetic Bloch function as &, as a consequence of the translational symmetry along

the y direction. Therefore:

E. =E, (12)
The Eq. (11)1s :
(p +$hk, + A(H)j
C

2m"

+> Vi (0-a,)+eFx fu, (0+%gd)= (Ek - qud)l,(y (6+%qd) (13)

and the conclusion is that, if Ek,‘- is an eigenvalue belonging to the electronic spectrum, then
E,;y —qeFd is another eigenvalue corresponding to the same value of &, .
In this paper we choose W as eigenfunctions of a single-dot Hamiltonian:
[P + yexj "
H,,.(0)= TC + 00 (14)
and we will approximate the Wannier functions by the lowest energy eigenstate, which is @

[8]:
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2
@0(0)=Lexp(—(9——ie—chy] (15)
0

Iherefore, the Eq (9) become .
Ik(‘;)_z(:n eikyn exp[—l—h ( )(é [l )j I 0(é [ln) (16)
y dn X :,

We will insert the last equation in the Schrodinger Eq . (5) :

2
Sic, ohos (p+ A(9)j
Cnx el "

drl

Z (0-d,)+eFx—E, exp[— ihiA(dn)(e ~d, )j ®,(0-d, )=0
(17)

which can be writen as:

(p+<a0)] A<e>j2

Z eﬁ +eFx—Ekv (I)O(H—dn):0

x C

dn

(18)
The expression inside the parentheses can be write in terms of the single-dot

Hamiltonian:

>, e""y”«vdexp(—ih— (d, )o-d, j[Hpme d )+AV(0-d,)+eFx—E, ]CDO(Q—dn)=O
d, ’ c '

(19)
where:
)=2. (0 "ot (0-4,) (20)
Since ®, is an eigenfunction of H ., with eigenvalue Q,we have :
>, e+ ar(o-a,)verx—E, |(0]d,) =0 @1)
d,
where we adopted the Dirac’s notation:
(01a,)=ex| -1 A@,Yo-a,)Jou(0-a,) @)

To determine the coefficients C, in the last equation we take the internal product with

):

the function < ,
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>, -k, fa,la,)+ (@, |Ar(@0-d,)d,) +(d, eFd, ) =0 23)
d,
In the tight-binding approximation, Eq (32) become::
[2 cos (27N, n, +k,d)-n, ﬂ}cnx +C, 0 +Cy = EynC, (24)
E, ~hQ—E
where E, im = | b 2 (25)
M

w2 Al )l ()

4
[
E.= LI P
2 Zpum:t

and Te is a function belonging to the matrix elements corresponding to the periodic potential

V. This equation is the Harper equation, which determines the energy spectrum.

3. The transfer matrix

The Harper equation (24) can be expressed in an matricial form [1]:

¥, .=T"%Y, (26)
where :
Y = ( C. J (27)
e,
and
T, (Eadim): E, ;. —2cos (27[N¢nx +kyd)+ nx% -1 (28)
1 0

is the transfer matrix. Because both C, and C are solutions of the Harper equation (24)

no+q

we have : C,. =e“C,

n.+q
We starting with ¥, and applying the equation (26) :
\Pq = Mq (Ea dim )\PO (29)

where :

Mq(Eadim)zﬁT;(Eadim) (30)

i=0

must be a unity matrix. Under this condition we have : ¢"¥, = M ;I‘PO +M ;2 Y,
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ia, _ag2l 22
and e 'V, =MV, + MY,
which has nontrivial solution if we have:

M=% M
q q

=0 31

MY M2 —e™ GD

The trace of the M matrix must be a real number :

1 +i
12 21 11 tia,
M =M, =0 ququz:e

Therefore, we have: rM, (Ea dim ) =2 cos(a . ) (32)
which become : ‘Tr M, (EadimX <2 (33)

The equation (33) determines the electronic spectrum of the Harper equation.

4. Numeric result
We present results for a two dimensional array of quantum dots with ldot =30 A and
lattice constant d=100 A. We assumed the effective mass =0.067. Fig.1. shows the energy

spectrum as a function of £ . One can see that the band has been split into exactly q=3

subbands. In fig. 2. we have the same results for p=1, g=4.
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Fig. 1. Energy spectrum for the system, for p=1, q=3 , 1dot=30 A, d=100 A
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Fig. 2. Energy spectrum for the system, for p=1, q=3 , 1dot=30 A, d=100 A

5. Conclusions

We have studied the energy spectrum of electrons in a two dimensional lattice of
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