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Abstract 
In a gauge theory of gravitation, with a particular form of gauge fields on obtain a Gödel type solution in 
the case of null torsion. The correspondent field strengths for the general case are presented and, using the 
resulting constraints of null torsion case, the Gödel type model are developed in a gauge theory of 
gravitation with de Sitter group as symmetry group. All the tensorial calculus are performed with 
analytical programs conceived in GRTensorII for Maple 8. 

 
 

1. Introduction 

The gauge theory of gravitation allows us to describe the gravity in a similar way with 

other interactions (electromagnetic, weak, strong). As gauge group of gravitation we use the 

de-Sitter group in order to obtain a model with cosmological constant for the gravitational 

field. The Poincaré gauge theory is obtained as a limit of de-Sitter model when the 

cosmological constant vanishes. The Section 2 is devoted to the formulation of the de-Sitter 

gauge model on a spherical symmetric Minkowski space-time. The general expressions for 

the components AFμν  of the strength tensor of the gauge fields are obtained. Particular ansatzs 

for the gauge fields are chosen and the corresponding components are presented in Section 3. 

The model lead to a Gödel type model in the gauge theory of gravitation, a nonsingular 

solution. The case of null torsion is considered in Section 4 with the resulting constraints. 

With these constraints on obtain the components of the abFμν  tensor and the scalar F. Using 

these results on obtain Einstein type equations in which the matter takes the form of a pressure 

free perfect fluid with no vanishing density. The tensorial operations involve a great number 

of calculations, and that imposes computer implementation. From this point of view, the 
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symbolic programs, as Maple, are appropriate. In this paper the calculations are performed 

using the GRTensorII computer algebra package, running on the Maple 8 platform. The basic 

analytical program for the Gödel type model in the gauge theory of gravitation is presented 

and also a model program for the case of Gödel metric in spherical coordinates which verifies 

Einstein equations. 

 

 2. Theory with DS gauge group for gravitation  

We consider a gauge theory of gravitation having de-Sitter (DS) group as local 

symmetry. Let AX , A = 1, 2,..., 10 be a basis of DS Lie algebra with the corresponding 

equations of structure given by [3]: 

 [ ] C
C

ABBA XifXX =, ,                                                (2.1) 

where C
BA

C
AB ff −=  are the constants of structure whose concrete expressions will be given 

below [eq.(2.4)]. We introduce, as usually, 10 gauge fields )(xh A
μ , A = 1, 2, ..., 10, μ = 0, 1, 2, 

3. Then, we construct the tensor of the gauge fields (strength tensor) A
A XFF μνμν =  which 

takes its values in the Lie algebra of the DS group (Lie algebra-valued). The components of 

this tensor are given by: 

 CBA
BC

AAA hhfhhF νμμννμμν +∂−∂= .                                        (2.2) 

In order to write the constants of structure C
ABf , we use the following notation for the index 

A: 
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This means that A can stand for a single index as well as for a pair of indices. The 

infinitesimal generators AX  are interpreted as: aa PX ≡  (energy-momentum operators) and 

[ ] abab MX ≡  (angular momentum operators) with property baab MM −= , a, b = 0, 1, 2, 3 [1]. 

For the constants of structure C
ABf  we find the following expressions: 
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where λ  is a real parameter, and )1,1 ,1 ,1( −−−= diagabη  is the Minkowski metric. In fact 

here we have a deformation of DS Lie algebra having λ  as parameter. When 0→λ , we 

obtain the Poincaré Lie algebra, i.e. the DS group contracts to the Poincaré group. 

We will denote the gauge fields (or potentials) )(xh A
μ  by )(xea

μ  (tetrad fields) if aA =   

and by )()( xx baab
μμ ωω −=  (spin connection) if ][abA = . Then, introducing the relations (2.4) 

into the definition (2.2), we find the following expressions of the strength tensor components: 

 ,)( bc
cabcabaaa eeeeF ηωω μννμμννμμν −+∂−∂=                              (2.5) 

 ).(4)( 2 baba
cd

dbacdbacababab eeeeF μννμμννμμννμμν ληωωωωωω −−−+∂−∂=         (2.6) 

The quantity aFμν  is interpreted as the torsion tensor and abFμν  as the curvature tensor of a 

Riemann-Cartan space-time defined by the gravitational gauge fields aeμ  and ab
μω . 

The action associated to the gravitational gauge fields, quadratic in the components AFμν , is 

written in the form [4]: 

 ∫= ,4
AB

BA
g QFFxdS ρσμν

μνρσε                                         (2.7) 

where μνρσε  is the Levi-Civita symbol of rang four. This action is independent of any specific 

metric on 4M . The quantities ABQ  are constants, symmetric with respect to the indices BA  , : 

BAAB QQ = . If we chose [1]: 
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⎧ ==

=
otherwise

cdBabAfor
Q abcd

AB                                       ,    0
][    ],[                 ,ε
                           (2.8) 

then we obtain the action of the General Relativity (GR). 

We develop a gauge theory of the DS group in a 4-dimensional Minkowski space-time, 

endowed with spherical symmetry: 

 ).sin( 2222222 ϕθθ ddrdrdtds +−−=                                 (2.9) 

 

3.  A model with particular gauge fields 

With particular forms of spherically gauge fields of the DS group )(xea
μ  and )(xab

μω  we 

obtain some nonsingular solutions. We use these expressions to compute the components of 

the tensors, aFμν  and abFμν . With the components of the strength tensor we calculate the 

quantities ν
μνμ b
aba eFF = , and the scalar νμ

μν ba
ab eeFF = . Here, ρ

ae  denotes the inverse of aeμ  with 

the properties: .           , ν
μ

ν
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μ
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We consider a particular form of spherically gauge fields of the de-Sitter group DS, 

)(xea
μ  and )(xab

μω   given by the following ansatz: 

 ( ) ),0 ,0 ,1 ,0(2                    ,),(2 ,0 ,0 ,12 120 aerAae == μμ θ                  (3.1) 

( ),),(1 ,0 ,0 ,02                    ),0 , ,0 ,0(2 232 θμμ rAAaerae +==  

respectively 

( ) ( ), r, C, , ,        ωr, B, , ω μμ ),(000),(000 0201 θθ ==  

 ( ) ( ),,r,W,        ω, r, Er, Pω μμ 0),(00,0),(),(0 1203 θθθ ==                          (3.2) 

( ) ( ), r, J, , rH,        ωr, G, , rQω μμ ),(00),(),(00),( 2313 θθθθ ==  

where A, B, C, P, E, W, Q, G, H, J are functions of three-dimensional radius r and θ . With 

this choice we obtain Gödel type solutions, i.e. nonsingular solutions. The non-null 

components of aFμν  are: 

 ),(2        ),(2 3
02

3
01 EHraFPQaF +=+=  

 ),1(2        ),1(2 22
03

21
03 CAHAaFBAQAaF ++−=++−=  

 ,1222        ),1(2 20
13

2
12 ⎟

⎠
⎞

⎜
⎝
⎛ +−+

∂
∂

=−= APAB
r
AAaFWaF  

 ,1212
1

2 2222

2

2
13 ⎟

⎠
⎞

⎜
⎝
⎛ +−+−

∂
∂

+
∂
∂

+
= AAPAG

r
AA

r
A

A
aF  

  ,1222 20
23 ⎟

⎠
⎞

⎜
⎝
⎛ +−+

∂
∂

= AEACrAAaF
θ

                                  (3.3) 

 ,1212
1

2 2222

2

2
23 ⎟

⎠
⎞

⎜
⎝
⎛ +−+−

∂
∂

+
∂
∂

+
= AAEAJrAAA

A
aF

θθ
 

In order to write the Einstein equations, we calculate the curvature scalar νμ
μν ba
ab eeFF = : 
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The calculations are performed using analytical programs conceived by us and running 

for the particular gauge fields presented in this paper. The basic program for the developed 

model in the gauge theory of gravitation is: 

 

Program ”godel-in-gtg.mws” 

restart: grtw(): 

grload(minknou, ‘c:/grtii(6)/metrics/minknou.mpl‘); 

grdef(‘ev{^a miu}‘); grcalc(ev(up,dn)); 

grdef(‘omega{[^a ^b] miu}‘);  grcalc(omega(up,up,dn)); 

grdef(‘eta1{(a b)}‘); grcalc(eta1(dn,dn)); 

grdef(‘Famn{^a miu niu} := ev{^a niu,miu} - ev{^a miu,niu} 

+ omega{^a^b miu}*ev{^c niu}*eta1{b c} 

- omega{^a^b niu}*ev{^c miu}*eta1{b c}‘); 

grcalc(Famn(up,dn,dn)); grdisplay(_); 

grdef(‘Fabmn{^a^b miu niu} := omega{^a^b niu, miu} -omega{^a^b miu, niu} 

+ (omega{^a^c miu}*omega{^d^b niu} 

- omega{^a^c niu}*omega{^d^b miu})*eta1{c d} 

- 4*lambda^2*(ev{^a miu}*ev{^b niu}-ev{^b miu}*ev{^a niu})‘); 

grcalc(Fabmn(up,up,dn,dn)); grdisplay(_); 

grdef(‘evi{^miua}‘);grcalc(evi(up,dn)); 

grdef(‘F:=Fabmn{^a ^b miu niu}*einv{^miu a}*einv{^niu b}‘); 

grcalc(F); grdisplay(_); 

grdef(‘Fam{^a miu}:=Fabmn{^a^b miu niu}*einv{^niu b}‘); 

grcalc(Fam(up,dn)); grdisplay(_); 

grdef(‘Faminv{a^miu}:=Fam{^b niu}*eta1{a b} 

*einv{^miu c}*einv{^niu d}*eta1{^c^d}‘); 

grcalc(Faminv(dn,up)); grdisplay(_); 

grdef(`u {^miu}`);  grcalc(u(up)); 

grdef(`ui {miu}:=ev{^c miu}*ev{^d niu}*eta1{c d}*u{^niu}`);  grcalc(ui(dn)); 

grdef(`Ec{^a miu}=Fam{^a miu}-(1/2)*F*ev{^a miu} 

                           -(1/(4*a^4))*ui{miu}*u{^niu}*ev{^a niu}`); 

grcalc(Ec(up,dn));  grdisplay(_); 
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 4. The case of null torsion  

 If we assume that all the components aFμν  of the strength tensor vanish and if we 

remember the Riemann-Cartan theory of gravitation, then the torsion tensor a
a FeT μν
ρρ

μν =  

vanish, in accord with GR theory. Here ρ
ae  denotes, also, the inverse of aeμ . From this 

condition we obtain the some constraints for gauge fields and its component functions. Using 

the obtained constraints, the analytical program compute the resulting components of abFμν ,  aFμ , 

the scalar F.  

If we consider the case of the model with null torsion, then, from (3.3) the constraints 

are: 
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We observe that the spin connection components ab
μω  are determined by tetrads aeμ  (are not 

independently): 
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The equations of Einstein for a pressure-free perfect fluid with no vanishing density can 

be written in the form:  

0
4

1
2
1

2 =−− aaa euu
a

FeF ν
ν

μμμ                               (4.3) 

where u μ =(1,0,0,0), and ν
νμμ η ueeu ab
ba= . 

With the resulting constraints (4.1) we obtain the Einstein equations with the solution 

)sinsinh( θrA =  for  -1+24λ2a2=0, which means that 2
2 12

2
1 λ=
a

 .  
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In the case of this solution we obtain the scalar νμ
μν ba
ab eeFF =  in the form: 

2
2 481 λ−=

a
F                                            (4.4) 

The solution corresponds to a metric ab
ba eeg ηνμμν =  which, in cylindrical coordinates, has 

the form: 

 .]sinh22)1(sinhsinh[ 222222222 dzdtrddrrdrdtads −+−+−= φφ                (4.5) 

where 2
2

2
1
a

=ω  is a positive constant which represent in fact the magnitude of the vorticity 

of the perfect fluid (the matter for the Gödel universe). 

 

 5. Concluding remarks 

 The gauge theory of gravitation allows a complementary description of the 

gravitational effects in which the mathematical structure of the underlying space-time is not 

affected by physical events. Only the gauge potentials )(xea
μ  and )(xab

μω  of the gravitational 

field change as functions of coordinates. This is important when we consider a quantum gauge 

theory of gravitation. 

In this paper the cosmological model represent a solution of Einstein equations with 

cosmological constant and energy momentum tensor for a perfect fluid. 

For the Gödel type model in the gauge theory of gravitation of the DS group in a 4-

dimensional spherical symmetric Minkowski space-time, 212λ−=Λ  is interpreted as 

cosmological constant. This model is a solution for the equivalent of Einstein equations in the 

gauge theory of gravitation if 2
2 12

2
1 λ=
a

 which correspond to 22
1
a

−=Λ [2]. The Gödel 

type model has no singularities and it is valid if the cosmological constant is negative.  
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