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Abstract 
The Dirac field on curved space-times is an interesting subject that is developed in this paper. 
The article presents algorithm computer algebra procedures and routines without using 
GrTensorII package. The main parts are exposed. Some results are provided for the usual 
metrics. 
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 1. Introduction  

 The Dirac fields in flat space-time, was built in order to write a linear equation from 

the Klein – Gordon relativistic field equation. In order to introduce Dirac equation on curved 

space-time we could use an anholonomic orthonormal frame because at any point of space-

time we need an orthonormal reference frame in order to describe the spinor field as it is 

already pointed before [1, 2, 3 and 4]. The Dirac equation in a general reference of frame, 

defined by an anholonomic tetrad field is [2]: 

    Ψ=Ψ mcDi μ
μγη                                (1) 

where the covariant Dirac derivative μD  is 

    μμμμμ Γ+
∂

∂
=Γ+∂=

x
D                                       (2) 

In the last few years, the most used package in developing this kind of algorithms is 

GrTensorII [1, 2, 4, 5]. The flexibility and the facilities offered by this set of procedures that 

was the reasons to study and to work with it. 
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 In this paper is presented a different way in building the fermions’ evolution equation, 

without the GrTensorII using. For curved manifold, the geometrical structure could be 

described considering the line element given as 

νμ
μν= dxdxgds2  

 To set the stage for building the Dirac equation in a curved space-time, should be 

introduced a local tetrad field 

αβν
β

μ
α

μν η= eeg  

where the metric tensor αβη  is considered to be of minkowskian kind,  

[ ]1111 −=ηαβ diag  

  The fermions’ covariant evolution equation has be written as 

  ( ) ( ) ( ) ( ) ( )xmxxxi
x

xi ψψγγ μ
μ

μ
μ =⎥

⎦

⎤
⎢
⎣

⎡
Γ−

∂

∂
−                           (3) 

  The ( ){ } 4,1=μ
μγ x  matrices are curvature dependent and could be presented in terms of 

tetrad fields as αμ
α

μ γ=γ e  and the spin connection ( )xμΓ  has to satisfy the equation 

  ( ) ( )[ ] ( ) ( )x
x

xxx ρν
μρμ

ν
ν

μ γΓ+
∂

γ∂
=γΓ ,                                        (4) 

where ν
μρΓ  are Christoffel symbols computed as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−

∂

∂
+

∂

∂
=Γ

τ
μρ

ρ
τμ

μ
τρντν

μρ
x

g

x

g

x

g
g

2
1                                     (5) 

  Building the ( )xμΓ  coefficients’ equation, can be derived the fermions’ evolution 

Dirac relation on curved space-time. 

 

 2. Overview on program structure 

 This section is devoted to a simple description of the used algorithm. First of all, it has 

to call the packages. The program includes only the usual groups of functions. So, it could be 

included in every other future program. After the inclusion of the used functions, it should be 

declared the involved co-ordinates and, of course the metric tensor functions. This first step 

ends with a set of instructions in order to compute the necessary Christoffel symbols 

coefficients and the inverse metric tensor μνg : 



 95

> restart; with(tensor):with(PDEtools); 

> coord:=[t,r,theta,phi]; 

> coord1:=[w1,w2,w3,w4]; 

> #The g11 element of the metric tensor 

> F1(coord[1],coord[2],coord[3],coord[4]):=F(t)^2; 

> ...... ; 

> Mg:= array (1..4, 1..4, symmetric, [(1,1) =F1 (coord[1], coord[2], 

coord[3], coord[4]) ,(1,2) =F2 (coord[1], coord[2], coord[3], 

coord[4]) , (1,3) =……]); 

> g:=create([-1,-1],op(Mg)); 

> ...... ; 

> Cf1:=Christoffel1(D1g); 

> ...... ; 

> g_inv:=invert(g,’det_g’); 

> ...... ; 

> Cf2:=Christoffel2(g_inv,Cf1); 

The next level includes some essential program elements. In this point is computed the 

linear transformations to and from the tetradic frame. These tensors are to be used in 

transforming the Dirac equation between the co-ordinates and rigid frames: 
> ...... ; 

> frame (g,h1_inv,const_g,coord); 

> eval(const_g); 

> ...... ; 

Next, it has to introduce the Dirac { } 3,0=μ
μγ  matrices, which allow building the Dirac 

equation. It could be used the Kramers representation. Further, can construct the entire set of 

Dirac representation matrices, and could transform them in the rigid frame. 

An important advantage of building these matrices in a tensorial form is given by the 

simplest expression of transforming the vectorial operators between the two considered 

frames. In the last instructions part is shown some checking procedures in order to ensure 

about the validity of obtained results. 
> Gst:=prod(H_transf,Gs,[2,1]); 

> M_Gst:=Gst[compts]; 

> ...... ; 

With these transformed Dirac matrices, should be built the entire 16 Dirac’s 

representation matrices set in order to obtain a complete picture of the state vector space 
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structure. Next section is devoted to build the spin connection coefficients equation. In order 

to write the obtained coefficients, in a symbolic manner, it has to use a supplementary 

procedure to build the spin connection expressions. In this point of view, it could be built the 

spin coefficients matrix. 
> ...... ; 

> TBV1:=create([+1], op(BV1)); AMV1:=TV1[compts];  

> TBV2:=prod(TBV1,TBV1); 

> ATV2:=TBV2[compts];  

> MATV2:=Matrix(1..4,1..4);  

> for I from 1 to 4 do for j from 1 to 4 do MATV2[I,j]:=ATV2[I,j] 

end do end do; 

This algorithm structure offers a real possibility in computing the spin connection 

coefficients, for a large set of curved space-times. It was checked on a series of cases [1, 2, 6, 

7, 8 and 9] and in comparison with other software programs’ results. The compatibility with 

the consecrated works allows considering it as a useful tool.  

 

 3. Results and Discussions  

 Let’s consider a Robertson-Walker space –time metric of the form 

( ) 22222
2

2
22 sin

1
dtddr

kr
drtRds −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ϕθ+θ+

−
=                             (6) 

where ( )tR  is an unknown function of time and k  is a constant, which can be chosen, by a 

suitable units for r  to have the value –1, 0 or +1.  

 The spin connection coefficients are [3]  

( )
1021

12
γγ

−
=Γ

kr

tR&  

 ( ) 12
2

202 1
2
1

2
1

γγ−+γγ=Γ krrtR&                                            (7) 

  ( ) 2313
2

303 cos
2
1sin1

2
1sin

2
1

γθγ+γθγ−+γθγ=Γ krrtR&       04 =Γ  

and, thus, can be written the Dirac equations on curved manifold 
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For a modified space –time metric tensor as 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ϕθ+θ+

−
−= 2222

2

2
2222 sin

1
)( ddr

kr
drtRdttFds                       (9) 

the spin connection coefficients are  

00 =Γ            ( )
1021

1)(2
γγ

−
=Γ

krtF

tR&  

( )
12

2
202 1

2
1

)(2
1

γγ−+γγ=Γ krr
tF
tR&                                      (10) 

( )
2313

2
303 cos

2
1sin1

2
1sin

)(2
1

γθγ+γθγ−+γθγ=Γ krr
tF
tR&  

 Let us consider a spherically symmetric configuration describe by a static conformal 

metric tensor type, expressed in Schwarzchild coordinates as 

  ( ) ( )( )[ ]2222222222 )(sin)( dtrbdrdrdrraeds t −ϕθ+θ+= Σ+Ξ  (11) 

  The spin connection coefficients are [2, 14]  
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)(
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 202 )(
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)(2
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r                                          (12) 

04 =Γ  

and, thus, can be written the Dirac equations on curved manifold 
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 For the metric [10] with the line element of the form 

  ( ) ( )( )23
3

23
22112 21

21
dtx

x
dxdxdxdxdxds λ

λ
−−

−
++=                         (14) 

where 

⎭
⎬
⎫

⎩
⎨
⎧ ∞−∈

λ2
1,3x  

could be derived  that the single non-vanishing component of the 1 – form spin connection is 

zλ
λ

−
=Γ

1
*
3  
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and the Dirac equation becomes 

  Ψ
−

=Ψ+Ψ+Ψ+Ψ+Ψ 3
04,

4
3,

3
2,

2
1,

1

1
2/ γ

λ
λγγγγ

z
m                  (15) 

The obtained result is same as in [10].  
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