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Abstract 
The final goal of our research is to prove the uniqueness of the simple SUGRA in D=11 because 
supersymmetry seems to be crucial in the attempts to reconcile quantum mechanics and gravitation. In 
D=4 the uniqueness of the simple SUGRA was already proved in the framework of the BRST 
formalism [1]. 

 
 
 1. Introduction 

 It is well known that the field spectrum of D=11, N=1 SUGRA consists in a massless 

spin-2 field, a massless spin-3/2  field and a 3-form gauge field. In the free limit the action of 

simple SUGRA in D=11 reduces to the sum between Pauli-Fierz, Rarita-Schwinger, and a 

standard abelian 3-form actions  
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 In order to determine the consistent interactions that can be added to action (1) we 

must study, beside the self-interactions, which are known from the literature, also the cross-

couplings. The latter problem can be solved in two steps: firstly, we determine the interaction 

vertices containing only two of the three types of fields, and then the vertices including all the 

three kinds. 

 In this talk we present one of the ingredients mentioned in the above, namely the 

problem of constructing consistent interactions among the Pauli -Fierz and an abelian three-

form gauge fields. We investigate these cross-couplings in the framework of the deformation 

theory [2] based on local BRST cohomology [3]. 

                                                 
* Oral presentation, TIM-05 conference, 24-25 November, 2005, Timisoara 
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 Free model 

 Our starting point is the Lagrangian action represented by the sum between Pauli-Fierz 

and an abelian three-form action in eleven space-time dimensions  
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 The theory (2) is invariant under the gauge transformations  
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 The gauge parameters με  and vμε  are bosonic, the last set being completely antisymmetric. 

The gauge algebra of the free theory (2) is Abelian. 

We observe that if in (3) we make the transformations  
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 then the gauge variation of the 3-form identically vanishes  

.0)( =ρμεδ ve A                                                            (5) 

 Moreover, if in (4) we perform the changes  
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 with φ  an arbitrary scalar field, then the transformed gauge parameters (4) identically vanish  
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  Meanwhile, there is no non-vanishing local transformation of φ  that annihilates )(φ
μθ  

of the form (6), and hence no further local reducibility identity. All these allow us to conclude 

that the generating set of gauge transformations (3) is off-shell second-stage reducible. 

 The structure of the reducibility relations is important from the point of view of the 

BRST symmetry as it requires the introduction of a tower of ghosts for ghosts, as well as of 

their antifields. 

 

Construction of consistent interactions 

 Due to the fact that the solution to the master equation contains all the information on 

the gauge structure of a given theory, we can reformulate the problem of introducing 
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consistent interactions as a deformation problem of the solution to the master equation 

corresponding to the ``free'' theory. If an interacting gauge theory can be consistently 

constructed, then the solution S to the master equation associated with the ``free'' theory can 

be deformed into a solution S  
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 of the master equation for the deformed theory  
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 such that both the ghost and antifield spectra of the initial theory are preserved. The equation 

(9) splits, according to the various orders in g, into 

,0),( =SS                                                           (10) 

,0),(2 1 =SS                                                        (11) 

,0),(),(2 112 =+ SSSS                                               (12) 

,0),(),( 213 =+ SSSS                                                 (13) 

…. 

 The equation (10) is fulfilled by hypothesis. The next one requires that the first-order 

deformation of the solution to the master equation, 1S , is a co-cycle of the ``free'' BRST 

differential. However, only cohomologically non-trivial solutions to (11) should be taken into 

account, as the BRST-exact ones (BRST co-boundaries) correspond to trivial interactions. 

This means that  1S   pertains to the ghost number zero cohomological space of s, )(0 sH , 

which is generically nonempty due to its isomorphism to the space of physical observables of 

the ``free'' theory. It has been shown (on behalf of the triviality of the antibracket map in the 

cohomology of the BRST differential) that there are no obstructions in finding solutions to the 

remaining equations ((12-13), etc.). However, the resulting interactions may be nonlocal, and 

there might even appear obstructions if one insists on their locality. The analysis of these 

obstructions can be done with the help of cohomological techniques. 

 For our free model the solution to the master equation reads as  
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Main results 

By direct computation we obtain the first-order deformation in the interacting sector 

like  
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 where k and p are arbitrary real constants. The consistency of the first-order deformation (the 

existence of the second-order deformation) requires that the real constant k satisfies the 

equation  
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 with the non-trivial solution 
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 The previous results can be summarized in the following theorem. 

 

Theorem  

Under the assumptions of: i) space-time locality, ii) smoothness of the deformations in the 

coupling constant, iii) (background) Lorentz invariance, iv) Poincaré invariance (i.e. we do 

not allow explicit dependence on the space-time coordinates), v) the maximum number of 

derivatives in the interacting Lagrangian is two, the only consistent deformation of (2) 

involving a spin-2  field and an abelian  3-form gauge field reads as 
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 and it is invariant under the gauge transformations  
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 which remain second-order reducible, with the first-order reducibility given by  
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 and the second-order redundancy expresses by  
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In the formula (18) EL  represents the cubic vertex of the Einstein-Hilbert Lagrangian. 

Now, we make the connection between our results and those predicted by GR. It is known that 

in GR the Lagrangian action for a three-form interacting with a gravitational field is of the 

form  

],
!4*2

1

)2(2[],[ 2
11

αβγδρλμ
λδργβμα

ρμμ

FFgggg

R
k

gdAgS

v
v

vv

−

−Λ−−= ∫
                               (23) 

 being subject under the second-stage reducible gauge transformations  
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 We observe that if in (25) we make the transformations  
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 then the gauge variation of the  3-form identically vanishes  

.0)( =ρμεδ ve A                                                        (27) 

 Moreover, if in (26) we perform the changes  
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φ
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 with φ  an arbitrary scalar field, then the transformed gauge parameters (26) identically 

vanish  
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( )0)(φθ
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 If we make the developments around the flat metric  
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then the leading order in the coupling constant k of (23)-(29) is in agreement with our 

formulas (18)-(22). 
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