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Abstract 
A cigar shaped BEC in a periodic external field is analyzed using the multiple scales method. Usually 
the dominant amplitude satisfies the completely integrable NLS equation. The discussion is extended 
to the vicinity of the “zero-dispersion point” (the point where the coefficient of the second order 
derivative vanishes). The multiple scales method is adapted to this situation and an equation containing 
the third order derivative is found for the dominant amplitude. It is no more integrable and several 
properties of it are investigated. 
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 1. Introduction  

 Since the first observation of Bose-Einstein condensation (BEC) in vapors of rubidium 

and other alkali gases in 1995 (for a brief history see [1], [2]),  the field enjoyed remarkable 

developments, both from experimental and theoretical point of view. A very promising 

achievement was the use of magnetic-field Feschbach resonance for manipulating degenerate 

atomic gases [3]. With this technique the scattering length is tuned from positive to negative 

values, and many interesting experimental possibilities are opened [4]. Among them the 

creation of different kinds of solitons in BEC in a cigar shaped geometry has received a great 

deal of attention (see [5], [6] and references therein). 

 A special situation arises when a periodic potential (generated by detuned standing 

laser waves, an optical lattice) is superposed on the condensate. Then a fragmentation of the 

original wave function and a crystal-like structure of mutually interacting BECs appears, 
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opening the possibility to observe several macroscopic interesting phenomena. Studies in this 

direction were done by several authors [7]-[10]. 

 In the present paper a BEC in a cigar shaped geometry is considered, with a periodic 

potential along x-axis. As is well known, for a low density condensate the wave function of 

the system satisfies the Gross-Pitaevskii equation 
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Here ⊥ω  is the oscillating frequency in the radial direction. Introducing the dimensionless 
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(N is the total number of atoms in the condensate), equation (1) becomes 
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, and the wave function )(rρψ  is normalized to unity, 
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dimensionless length of the cylinder). 

 

 2. Linearized problem 

 The solution of the linear problem can be written as a product of a harmonic oscillator 

wave function (in the fundamental state) and a Bloch function 
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corresponding to the energy 

).()(,0 qEqE νν ω += ⊥η  



 74

We can assume small nonlinearity ( 12 <<ψχ ) and therefore we can restrict ourselves to the 

lowest state of the harmonic oscillator in the radial variable. In (3) alM /=   (a  the period of 

V(x)),  q is the wave vector restricted to the first Brillouin zone (-π/a, π/a,), )(qEν  the energy 

of the corresponding Bloch function, and )(xu qν  is a periodic function )()( xuaxu qq νν =+  

normalized to unity in the unit cell. 

 

 3. Multiple scales analysis 

         The solution (3) is unstable to small modulations of the amplitude. The usual way to 

treat this instability is to use the asymptotic method of multiple scales [11], [12]. Besides the 

“fast variables” one introduces the “slow variables” 
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and the wave function ψ  is expanded in the small parameter ε  
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where each component jψ  is a function both of fast variables ( )txr ,,⊥  and the slow variables 

,...)}.(,...);({ 11 ttxx ≡≡  In the first order in ε  we get 

01
1 =−

∂
∂ ψψ L

t
i                                                            (6) 

and consequently  

),(),( ,01 trtxA q
ρ

νψψ =                               (7) 

where  the amplitude A depends only on the slow variables. In order 2ε  we obtain 
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The right-hand side  of (8) contains terms proportional with ),(,0 trq
ρ

νψ and consequently 

secular terms (proportional with t ) in 2ψ  can appear. To avoid such situations one has to 

assume for 2ψ  an expansion  
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where the new amplitudes qBν ′  are functions only on the slow variables ).,( tx  It is necessary 

to leave the amplitude qBν  undetermined, and it is easily seen that this can be realized if 

),( txA  satisfies the equation 
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The relation (10) is satisfied if A depends on ),( 11 tx  only through the combination 

.)( 11 tqcx −=ξ                                                         (12) 

The other amplitudes qBν ′    ( 0≠′ν ) are now easily determined, namely 
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In the third order in ε  appears also a nonlinear contribution. We get 
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Also we are faced with the posibility to have a secular behaviour. To avoid it we have to 

assume that qBν  (and consequently all the amplitudes qBν ′ ) are depending on ( )11,tx  only 

through the variable ξ , and we have to impose a certain restriction on A. Denoting 
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after straightforward calculation this restriction writes 
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(only one low spatial variable, 1x , is taken into account). The equation (16) is the well known 

nonlinear Schrödinger equation, and depending on the signs of 2D  and χ  it has bright or dark 

soliton solutions. The coefficient 2D , defined in (15) is related to the second order dispersion. 
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Usually there is a point cqq =  for which 0)(2 =cqD , which we shall call the “zero dispersion 

point” and will be discussed in the next section. 

 

 4. Zero dispersion point 

   The zero dispersion point problem is well known in nonlinear optical fibers, being one 

of the most convenient way of operating [13]-[16]. The same situation was discussed in 

nonlinear quasi-one-dimensional molecular crystals (Davydov’s model) [17]. 

  To discuss the ZDP case we have to modify the multiple scales method. Instead of (5) 

we have to use the following expansion 
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and to consider the wave vector q in the neighborhood of cq , namely .qqq c Δ+= ε  The first 

two orders in ε  give the same results as in the previous section. In order 2/7ε  we get 
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In order to eliminate possible secular behavior the right-hand side of this equation has to be 

orthogonal on ).,(,0 txqνϕ  One obtains 
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which is satisfied if A depends on ( )22 , xt  through the combination 22 ctx −=η  and B depends 

on ( )11, xt  through .11 ctx −=ξ  The last term gives a contribution in the next order, 
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while the coefficient ννC  remains undetermined. 

The relevant order is 2/9ε . One obtains 
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In order to eliminate a possible secular behavior again we have to ask that the right-hand side 

to be orthogonal to the null space of the left-hand side. After straightforward calculations and 

using the previous expressions for 3ψ  and 2ψ  we finally get 
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Let us assume that A is independent of 3x . Also the dependence on η  is irrelevant at this 

stage. We can eliminate the second derivative in (21) using the transformation 
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which is no more a completely integrable equation. 

 

 5. Conclusions 

A Bose-Einstein condensate in a cigar shape geometry is studied when a periodic 

potential in the longitudinal direction is present. The condensate is assumed to remain in the 

ground state of the radial harmonic oscillator. The longitudinal Bloch wave function is 

unstable at small modulations of the amplitude. The multiple scales method is used to discuss 

this phenomenon. When the condensate is far from the so called zero dispersion point the 
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main amplitude satisfies the well known nonlinear Schrödinger equation. The zero dispersion 

point separates the region where bright solitons exist from the region where only dark ones 

appear. In the vicinity of this point the multiple scales method has to be slightly modified and 

the main amplitude satisfies now a non-integrable equation. 
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