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Abstract 
The deals with equilibrium and transport properties characterizing an Aharonov-Bohm ring with 
attached leads. This concerns the persistent current in the ring and the conductance, respectively. The 
dependence on the magnetic flux as well as on the gate voltage is discussed in both cases.  
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 Recent progress in electron beam lithography, ephitaxial growth and colloidal 

synthesis made possible fabrication and manipulation of semiconductor structures in which 

the carriers are confined in all three dimensions to a nanometer region. A quantum dot is a 

semiconductor crystal whose size is of the order of a few nanometers to few hundred 

nanometer [1,2]. Quantum dots confine electrons, holes, or excitons to a region on the order 

of the electron’s de Broglie wavelength. The electrons on an 1D ring shaped nanowire which 

is threaded by a magnetic flux i.e. the Aharonov-Bohm (AB) ring, has received much interest 

[3-7]. The nonvanishing angular momentum of quantum ring in the presence of a magnetic 

field is closely related to the so-called persistent currents. Such currents have been observed 

in experiments with GaAs/GaAlAs rings [8-11]. Signatures of the Fano resonance [12] 

originating from the interference between a discrete energy level and a continuum, have been 

reported [13]. 

 A further interesting configuration is done by a discretized Aharonov-Bohm ring with 

 sites, now with two attached semi-infinite leads [14]. These leads are attached to the sites 

1 and n, as shown in Fig. 1. The point-like couplings between the ring and the leads are 

sN
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characterized by the hopping amplitudes Rt  and , where the subscripts “ R ” and “ L ” stand 

for “right” and “left”, respectively. A point-like coupling between the leads, such as expressed 

by the hopping parameter t

Lt

c will also be accounted for. This latter coupling provides the 

continuous path for inter-lead electron transmission. In addition, there are tunneling effects of 

the electrons through the ring, which serves as a “discrete” path for the transmission just 

mentioned above. 
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Fig. 1. Schematic view of the 

quantum ring threaded by a magnetic flux 

and attached to two current leads.  

 

In order to proceed further let 

us denote the creation (annihilation) 

operator of the spinless electron on 

the ring, on the left and right leads 

by , and , 

respectively. The site-numbers are given by l=1,2,…N
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s, for the ring, m = -1,-2,…, for the left-

lead, and m = 1,2,…, for the right lead. In order to describe the non-interacting leads, i.e. the 

pertinent 1D conductors, we shall resort to 1D tight-binding models with NN-interaction, in 

which case t0 stands for the inherent hopping parameter. 

The electron on the ring is described by the Hamiltonian 
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where the site energy is given by and tlε r denotes the related hopping parameter. One realizes 

that (1) proceeds in a close analogy with the hopping Hamiltonian of a 2D lattice under the 

influence of a magnetic field  

( ) H.c.+                           (2) 

where 
j
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 is magnetic phase factor, A
r

is the vector potential and 0 hc / eφ = is the 

magnetic flux quanta, as usual. Accordingly, the corresponding phase reads 

0

2
φ
φπ

=ϕ
NR       (3) 
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The periodic boundary condition characterizing (1) reads lsNl cc =+ . Putting together both 

transmission channels leads to the tunneling Hamiltonian [14] 

T c l 1 L 1 1 R 1 n c 1 1 L 1 1 R 1H t a b t a c t b c t b a t c a t b c+ + + + +
− − − −= + + + + + n

+    (4) 

which is responsible for the transport properties one looks for. 

 At this point we have to realize that a uniform gate voltage, say , can be introduced 

via 

gV

gll V+ε=ε 0                     (5) 

which provides the tuning-parameter for further investigations. It can be assumed, for 

convenience, that . It is understood that the spinless electron operators mentioned 

above satisfy usual canonical commutations relations like 

00 =ε l

[ ] nmnm aa ,, δ=+ and similarly for  

and . It is also clear that 

mb

lc

[ ] [ ] [ ] 0,,, === lnlmnm cbcaba       (6) 

 The present eigenvalue problem can be readily solved using the wavefunction ansatz 
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so that we have to assume that 000 == BA . The electron amplitudes on the left-lead, on 

the ring and on the right-lead are denoted by ,  and , respectively. Next, it can be 

easily verified that the stationary eigenvalue equation 

mA lC mB

ψ=ψ EH                     (8) 

where the total Hamiltonian reads 

TRingLeads HHHH ++=                     (9) 

can be converted into coupled linear equations. These equations are given by  

1,11110 )()( −−+ δ+++= mLcmmm CtBtAAtEA      (10) 

if  ,1−≤m

1,11110 )()( mcRmmm AtCtBBtEB δ+++= −−+            (11) 

if and ,1≥m

nlRlLRlrRlrll BtAtiCtiCtCE ,11,111 )exp()exp()( δ+δ+ϕ−+ϕ=ε− −−+  12) 

which yield typical manifestations in interaction and interaction-free regions, respectively. 
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 Incoming and outgoing interaction-free regions in the leads can be identified via 

and , respectively. Within such interaction-free regions equations (10) and (13) 

exhibit plane wave solutions like 

2−≤m 2≥m

))1(exp())1(exp( +−++= mikrmikAm    (13) 

and 

)exp(ikmtBm =           (14) 

where k is the dimensionless wave number, while r and t denote reflection and transmission 

amplitudes. The energy of the incident electron is given by 

ktEin cos2 0=          (15) 

in terms of units for the lattice spacing is unity. Concerning the ring, the interaction-free 

regions are specified by and . This gives the equation 1≠l nl ≠

)exp()exp()( 11 RlrRlrll iCtiCtCE ϕ−+ϕ=ε− −+       (16) 

in accord with (12). Invoking again plane-wave solutions like 

)~exp( lkiCl =           (17) 

enables us to derive the ring energy as 

)~cos(2 Rrlr ktEE ϕ++ε==     (18) 

where 
s

2 nk
N
π

=% . One would then have )2,0[~
π∈k  if ),0[ sNn∈ , which means that we deals 

with - levels . Restricting ourselves to l –values for which sN ( 1,...,2,1,0 −= sNn ) 1≠l and 

, one finds “discretized” continuity equations like nl ≠

0=∇+ρ
∂
∂

ll I
t

         (19) 

by virtue of (16) For this purpose has been replaced, for the moment, by . This 

amounts to start from the time dependent Schrödinger-equation 

lEC tCi l ∂∂ /h

tiH ∂ψ∂=ψ /h instead of 

(8). This time one deals with the left-hand discrete derivative 

1−−=∇ lll III            (20) 

Accordingly, there is 2
ll Ce−=ρ and 

))exp(Im(2
1

*
Rllrl iCCteI ϕ= +

h
        (21) 

which plays the role of a particular contribution to the persistent current in the ring. So we 

have found a suitable description of the ring-current, which is provided specifically by the 
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space discreteness. The total persistent current in the ring should then be given reasonably by 

the selected average 

∑
−

=>=<
≠≠ nll
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N
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1'                  (22) 

in which the primed summation indicates that terms for which 1=l and  are ruled out. 

This corresponds to the implementation of a continuity equation like 

nl =

0=∇+
∂
∂ I

t
p          (23) 

where the corresponding charge density reads 

∑ρ
−

=ρ
≠≠ nll

l
sN ,12
1       (24) 

 Of a special interest is the transmission probability  
2

1BTp =         (25) 

which yields the conductance by virtue of the well-known relationship (see e.g. [15] Datta 

(1995)) 

pT
h
eG

22
=           (26) 

 Next it can be easily verified, that one has 

kiikAA sin2)exp(12 −= −−      (27) 

and 

12 )exp( BikB =            (28) 

 This yields the equations 

1 0 c 1 0 LA (E t exp(ik)) t B 2it sin k t C− − − = − + 1               (29) 

and 

nRc CtiktEBAt −=−−− )exp(( 011         (30) 

 Fixing the energy and accounting for (13) we have the opportunity to establish a 

number of  relationships concerning 2+sN 1),,...,2,1( −= ANlC sl and . We have to remark 

that the couplings can be expressed safely in units of t

1B

0. What then remains is to solve 

numerically (13), (29) and (30), which results in interesting plots presented bellow. We shall 

in turn resort to the energy fixing 0== inEE  [14], which means in turn that . The 

dependence of the conductance and of the persistent current on the gate voltage (magnetic 

flux) is displayed in Figs. 2 and 3 (Figs. 4 and 5), respectively. Units for which t

iik =)exp(

0 =1 are used. 
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One sees that both conductance and persistent current are periodic functions of the magnetic 

flux with period .  0Φ
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                 Fig. 2                                                                              Fig.3 

Fig.2 The Vg dependence of the conductance G for Ns =5, tr=0.2, tL=tR=0.1, k=π/2 and 00.3φ = φ . 
Fig. 3 The Vg dependence of the persistent current Jm for Ns =5, tr=0.2, tL=tR=0.1, k=π/2 and 

00.3φ = φ  

   
                                                              0

                  Fig.4                                                                             Fig.5  

Fig.4 Conductance G versus adimensionally flux for Vg=0.03, Ns =5, tr=0.2, tL=tR=0.1, k=π/2 

Fig.5 Persistent current Jm versus adimensionally flux for Vg=0.03, Ns =5, tr=0.2, tL=tR=0.1, k=π/2 
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 In summary, we found that the dependence of the conductance and of the persistent 

current on the gate voltage can be studied in a rather controllable way. The peaks 

characterizing the dependence of he conductance on the gate voltage exhibit asymmetric Fano 

line-shapes, which are displayed in Fig.2. Such shapes are reminiscent to the interference 

effects between the continuous and discrete paths of the electron transmission mentioned 
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above. The peaks exhibited by the persistent current versus the gate voltage rely on the levels 

of the ring, as indicated in Fig.3. Figure 4 shows that the dependence of the conductance on 

the magnetic flux is characterized by a periodic sequence of Fano-like profiles with the period 

given by the flux quantum. The same periodicity concerns the peaks of the persistent current 

displayed in Fig.5. These latter peaks can also be viewed as a manifestation of AB-

oscillations. Without considering other details, we have to mention that electrons confined on 

a quantum Aharonov-Bohm ring are able to form a spin singlet state with electrons in the 

leads. This results in the implementation of a pronounced many-body Kondo-effect at lower 

fields, which received much attention during the last decade (see e.g. Keyser et. al. (2003)). 

However, Coulomb-blockade effects have also to be accounted for larger fields [16]. 
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