
Analele Universităţii de Vest din Timişoara 

Vol. XLVI, 2005 
Seria Fizică 

 
 
 

RICCI FLOW EQUATION IN TWO DIMENSIONS AND THE LINEARIZATION1 

APPROACH 

 

 

Mihai Visinescu  

 
Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering, Magurele, P.O.Box 

MG-6, RO-077125 Bucharest, Romania 

 
 

Abstract 
Ricci flow equation in two dimensions is investigated in the conformal gauge in a linearization 
approach. Using a non-linear substitution of logarithmic type, the emergent quadratic equation is split in 
various ways. New special solutions involving arbitrary functions are presented. Some special 
reductions are also discussed. 
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 1. Introduction 

 As an attempt to quantize gravity, it is interesting to investigate quantum field theory 

in a curved space-time background. Solving relativistic field equations in  (3+1) -dimensional 

curved space-time is generally a difficult process. An alternative approach is to consider 

lower-dimensional space-times models where exact solutions may be obtained. It is now long 

time since lower-dimensional gravity proved to exhibit many of the qualitative features of  

(3+1) -dimensional general relativity, high dimensional black holes, cosmological models and 

branes [1,2,3]. 

 It is a long time since 1+1 and 0+1 dimensional gravity coupled to scalar fields proved 

to be a reliable model for high dimensional black holes, cosmological models and branes. The 

connection between high and low dimensions has been demonstrated in different contexts of 

gravity and string theory: symmetry reduction, compactification, holographic principle, 

AdS/CFT correspondence, duality, etc. [4]. 

                                                 
1 Invited lecture presented to TIM-05 conference, 24-25 November, 2005, Timisoara 
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 Ricci flow is an important geometric evolution equation in Riemannian geometry. It 

was introduced by R. Hamilton in 1982 [H] for producing Einstein metrics of positive scalar 

curvature and constant positive sectional curvature. In two space-time dimensions, Ricci flow 

provides a proof of the uniformization theorem, which states that every closed orientable two-

dimensional manifold with handle number 0 , 1 or >1 admits uniquely the constant curvature 

geometry with positive, zero or negative curvature, respectively. On the other hand and it was 

used extensively to try to prove some outstanding results on 3 - and  4 -dimensional manifolds 

like the Thurston'd geometrization conjecture, classification of compact 4 -manifolds with 

non-negative isotropic curvature, etc. [6,7]. 

 The Ricci flow equations arose independently in physics in the early '80s. Since then 

they have become a major tool for addressing a variety of problems in the quantum theory of 

fields and strings as well as in geometry where some ground breaking results have been 

obtained in recent years. The Ricci flow of  d -dimensional manifolds is interesting because of 

its relationship to the renormalization group equations of generalized sigma models with d-

dimensional target space. On the other hand it is well known the connection between the 

sigma models from physics and the harmonic maps in mathematics. 

 The two dimensional Ricci flow equation arises in many areas of physics where super 

fast diffusion processes take places. It appears in studies in a certain approximation to 

Carleman's model of the Boltzmann equation. It is used to describe some diffusion processes 

in plasma, including mirror effects. It governs the expansion of a thermalized electron cloud 

described by isothermal Maxwell distribution. Finally, it appears as limiting case of the 

porous medium equation. On the other hand the famous cigar soliton coincides with the so 

called Baremblatt solution in the theory of porous media, whereas the sausage deformation of 

the round sphere coincides with the axi-symmetric solution found in fast and super fast 

diffusion processes when written in conformally flat frame. 

 In two dimensions, the Ricci flow equation written in a local system of conformally 

flat coordinates has been studied in detail by Bakas [8,9,10,11] from an algebraic point of 

view. It was considered as a continual version of the general Toda-type equation for a given 

Lie algebra. It was found a formal power series solution by expanding the path-ordered 

exponentials. Although the proposed general solution provides a formal complete solution for 

the Ricci flow equation, its form is quite intricate and difficult to handle. In a recent paper 

[CV] we used a direct non-linear substitution,  then split the resulting non-linear equation. We 

considered the Ricci flow equation to be in the class of linearizable systems rather than Lax-

pair solvable ones. This results in a class of special solutions, which recover practically all 
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known solution in the literature. Therefore the linearization approach represents a powerful 

procedure to generate explicit solutions of the Ricci flow equation. Adding supplementary 

assumptions connected with the symmetries of the concrete physical systems or assuming 

special dependence on parameter of deformation it is possible to get effectively large class of 

solutions. 

 The Ricci flows are second order non-linear parabolic differential equations for the 

components of the metric  of an n -dimensional Riemannian manifold which are driven by 

the Ricci curvature tensor :  

vg μ

vRυ

     vv Rg
t μμ −=
∂
∂                                                            (1) 

 This equation describes geometric deformations of the metric  with parameter t. 

From the analysis of such partial differential equation one obtains existence and uniqueness 

theorems of solutions on some interval of the parameter of deformations starting from any 

smooth initial metric. In some cases the solutions exist after infinitely long run of the 

parameter of deformation in the sense that the metric does not become singular anywhere. 

vg μ

 The connection between high and low dimensions has been demonstrated in different 

context of gravity and string theory and in some cases allowed to find general solutions or 

some special classes of solutions in high dimensional theories. Realistic theories describing 

black holes and cosmologies are usually non integrable. However, explicit general solutions 

of the integrable approximations in lower dimensions may allow the construction of different 

sorts of perturbation theories. Therefore looking for new exact, analytic solutions of the Ricci 

flow equations in lower dimensions it is possible to find solutions of interest for a realistic 

description of gravitational interaction in higher dimensions.The Ricci flow equations on 2- 

and 3-dimensional manifolds have attracted considerable attention in physical literature in 

connection with lower dimensional black hole geometry, exact solutions of the 

renormalization group equations in quantum field theories, description of the decay of 

singularities in non-compact spaces, etc. 

 The purpose of this paper is to present new explicit solutions for 2 -dimensional Ricci 

flow equation using a linearization approach. 

 

 2. Linearization approach 

In what follows we shall consider in a 2 -dimensional space a local system of 

conformally flat coordinates in which the metric has the form  
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using Cartesian coordinates  x,y  or the complex conjugate variables  . ixyz ±=±2

 Having in mind that the only non-vanishing component of the Ricci tensor is  
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the Ricci flow equation (R) becomes  
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 It is useful to use the substitution  
)_;,();,( tzzetzzv +Φ

−+ =  

writing eq. (2) in the form  

_)(ln)( zzt vv +=                                                             (3) 

This equation has been studied in detail from the algebraic point of view in [10]. It is 

considered as a kind of a general Toda equation with a "continuous" Cartan matrix in a form 

of derivative of Dirac distribution in the nonlinear part. The Lax pair formulation of the initial 

Toda equation is "translated" in the continual version together with its general power series 

solution. In spite of its elegance, in this approach everything goes only formally. The 

corresponding Lie algebra is rather an exotic infinite dimensional one and, accordingly, the 

integrability through zero curvature formulation is problematic as well [10]. In any case, 

starting from a simple "seed" solution the power series formula can be effectively 

implemented to give approximate solutions. Our approach to the equation is somewhat 

different. We use a direct nonlinear substitution, then split the resulting nonlinear equation. 

This results in a class of special solutions. Moreover we consider that the equation (3) is 

rather in the class of linearizable systems than Lax-pair solvable ones. 

 Our supposition comes from the following observations: 

1. Starting with (3) and using the substitution += zv ϕ  , after integrating once with respect to  

 we get           +z +−++ += zzzzt Cϕϕϕϕ                                                          (4) 

 where  C  should be a function of    and  t  , but for the moment it is considered constant. 

Now making the substitution  

−z

Fln=ϕ   we will end up with the following quadratic equation:  

0=−+− +−+−++ zzzzzzt CFFFFFFFF                                         (5) 

2. Equation (3) does not pass the Painlev e test. 

 48



 Accordingly we are going to seek an underlying linear (or solvable) system for (3). Let 

us remark that eq. (3) is symmetric in variables   and    and, consequently, in the rest of 

the paper, the role of these variables can be interchanged. 

+z −z

 Let us assume that  C   is no longer a constant, but a free function of  and t . In this 

case, defining  

−z

∫ ∞− −+=
t

dttzC ),(ψϕ  

  then (4) will have the form  

−++ = zztz ψψψ                                                              (6) 

  Using the same nonlinear substitution  Fln=ψ   we get  

−++ =+ zzztz FFFFF )(                                                         (7) 

Equation (7) can be split in some linear or nonlinear solvable equations. Of course, all 

the possibilities we are going to analyze will give only special solutions and not general ones. 

First of all, we shall split eq. (7) into a system of linear equations. Here we list the most 

interesting possibilities: 

• Linearization I  

0
0
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 with the general solution  

)()();,,( −+−+ −+= ztgzftzzF  

 where  f,g  are arbitrary functions. The solution of (2) is  
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which is in fact the generalization of the multi-shock solution. 

 Other linearizations of this type are presented in [12], but they are equivalent with the 

previous one by means of a simple transformation. 

 The next attempt is to split eq. (7) in a solvable system of nonlinear equations. Like in 

the linearization of the type I, we have the possibilities: 

• Linearization IIa  
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FF
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                                                   (9) 

 The advantage of this splitting is that the first equation of the system (9) is a Bernoulli one 

with the solution  
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 where   is an arbitrary function. Introducing this expression in the second equation of 

the system one finds a linear equation for  :  
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 In this way, the general solution for the system (IV) is  
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  which gives  
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 Accordingly this nonlinear splitting gives a stationary solution, i.e. independent of the 

parameter of deformation  t . 

• Linearization IIb  
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  From the first equation of the system we get  
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 with  β   an arbitrary function. Introducing in the second equation we get  
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 having the solution  
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 Now solving the first equation for    in the case of a general function h β  is a difficult 

task. In any case, for 0=β   the system can be solved having the solution  

.
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)(
);,(

tzzf
zf

tzzv
ααα ++−

=
−+

+
−+                                         (12) 

 We remark that the nonlinear splitting of the bilinear form gives solutions which are 

less general than (8). A different approach to eq. (7) can be done using a special combination 

of the variables  and  as a new independent variable. For example the well known +z −z
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solutions of cigar-type, or rational type, discussed in [10] can be obtained by introducing the 

following substitution:  

.ξ=+ −+ zz                                                              (13) 

  Then (2) becomes  

.)(ln ξξvvt =                                                            (14) 

which has been extensively studied in [13]. 

 Another simple symmetric combination of variables  and  is  +z −z

.ξ=−+ zz                                                              (15) 

 Again, using the same machinery we end up with the following bilinear equation:  

ξξξξ ξξ FFFFF t =+ )(                                              (16) 

and, of course  

Ftzzv ln);,(
ξ∂
∂

=−+ . 

 As in the linearization I, the following alternatives are obvious: 

• Linearization IIIa 

 Now, we can split (13) in the same way as before:  

0
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FFt  

with the general solution  

beatF t += −ξξ ),(  

 where  a,b  are constants. In this case  

.1);,(
te

a
bzz

tzzv
+

=

−+

−+                                              (17) 

• Linearization IIIb  
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From the first equation of this system we have  

)()(
2
1),( 2 tthtF μξξ +=  

 and from the second    with  a,c  constants. Accordingly  tt cetaeth == − )(,)( μ
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 Other two splittings are presented in [12], but they give trivial or stationary solutions. 

 Finally, let us consider the following splittings of eq. (16) in solvable systems of 

nonlinear equations: 

• Linearization IV  
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  From the first equation of the system we get  

,))]()(1[( 1
1
atgaF −+−= ξ  

but if we introduce it in the second equation we have zg α=+1'   which gives    and  1' −=g

0=α   and consequently  F  is trivial. 

 Other similar linearizations are presented in [12], but again they do not direct to new 

interesting solutions. 

 In what follows, let us summarize the obtained results and comment their physical 

relevance. The multitude of explicit solutions of the Ricci flow equation (3) proves that the 

linearization approach represents an efficient procedure to generate explicit solutions. Among 

them, the solution (8) is the most general and corresponds to the largest linearizable sector. As 

we mentioned above, in the form of solution (8), the role of the variables    and    can be 

interchanged, taking into account that eq. (3) is symmetric in these variables. The exhaustive 

study of the Lie symmetries and similarity reductions performed on the quadratic equation (7) 

will be the subject of forthcoming work [14]. 

+z −z

 In the present paper, to illustrate the importance of the symmetries of eq. (7), we limit 

ourselves to solutions which depend on simple symmetrical combinations of the variables    

and   . First of all, we considered solutions which depend only on  

+z

−z −+ += zzξ   and  t . In 

this case we get eq. (14) which emerges in plasma physics and in the central limit 

approximation to Carleman's model of the Boltzmann equation [15]. In [13] it was pointed out 

that this equation has an addition property. To exhibit briefly this remarkable property, let us 

introduce    and put eq. (14) in the equivalent form:  ξyu =

,ξξξξ Cyyyy t +=                                                     (19) 
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with  a constant. If C )( tY λξ +  and )( tZ λξ −  are particular solution of (19), then for every  

λ , 

)()( tZtY λξλξ −++  

 is a solution as well. It can consider that the nonlinearity in eq. (19) annihilates the nonlinear 

interaction. 

 Finally, let us remark that in all the above searches for solutions we did not assume a 

particular dependence on the parameter t. However, looking for a special dependence on t, we 

are able to produce new solutions of special interest. To exemplify this possibility, let us 

assume for    a linear dependence on t:  ),,( tzzv −+

),(),,( −+−+ = zztGtzzv  

 and investigate the consequences of this ansatz for problems with axial symmetry. Therefore, 

assuming that the dependence on the variables    and    is through the symmetrical 

combination  

+z −z

−+= zzξ  , the Ricci flow equation (3) becomes  

ξξξ ξ )(ln)(ln GGG +=  

Making the substitution  ξφ=G   we end up with the equation  

ξξξ ξφφφ =  

 Integrating this equation once with respect toξ  , we get the ordinary differential equation  

.
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 where c  is a constant. The solution of this equation is  
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 where we denoted by 12 −= cd . 

For   , solution (21) acquires a simpler form: 0=c

,
1

2
−
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ξ
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a
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 where a  is a constant. In this case we get for   the final form  ),,( tzzv −+
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 We note that in physics we come often across such kind of solutions with a linear 

dependence on t . For example, we mention the renormalization group flow equation for a 

sigma model onto a purely gravitational target space. More precisely, the class of solutions 

(22) appears in the exact solutions of the renormalization group equations that describe the 

decay of conical singularities in non-compact spaces [10, 16]. 

 

 3. Concluding remarks 

It is a hopeless task to find the general solution of the Ricci flow equation in arbitrary 

number of dimensions. Fortunately, several important results depend only on the qualitative 

properties of the flows and not on exact solutions. Many times it is also useful to have explicit 

expressions or computer simulations. All these considerations determine us to continue the 

investigation of the Ricci flow equation in space-times with low dimensions. 

The linearization approach represents a powerful procedure to generate explicit 

solutions of the Ricci flow equation. Adding supplementary assumptions connected with the 

symmetries of the concrete physical systems or assuming special dependence on parameter t it 

is possible to get effectively large class of solutions. 
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