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Abstract 
Results of the measurement of the frequency and field dependence of the complex magnetic 
susceptibility, χs(ω) = χ's(ω) -iχ''s(ω),  of a water based colloidal suspension of 200nm magnetic beads 
containing single domain maghemite( γFe203) nanoparticles, are presented. 
Measurements are performed over the frequency range 200 Hz to 1 MHz whilst the polarizing field, H, 
is varied over the range 0-13.6 kA/m, initially in a forward direction, and then in a reverse direction and 
from a plot of the static susceptibility, χ0S, against H, the existence of a hysteresis effect is confirmed. 
Under the increasing polarizing field an absorption peak is detected in the imaginary susceptibility  
component at frequencies fmax between 1.26 and 2.15 kHz. It is confirmed that the absorption peak can 
be attributed to the Néel relaxation of the inner maghemite nanoparticles.  
Keywords:Ferrofluid; Magnetic fluids, Magnetic beads, Relaxation;  
PACS: 75.50.Mm Magnetic fluids;76.60.Es Relaxation effects; 

 
 
 1. Introduction 

 Superparamagnetic colloids [1] are presently used in many fundamental areas of 

research. For instance, the use of such colloids with beads coated with antibodies that 

specifically bind to specific proteins is of current interest in the area of medical diagnosis [2].  

  The magnetic spheres investigated here have a diameter of 200 nm[3] and were were 

made by evaporating the solvent (octane) in emulsions of an organic ferrofluid. These solid-

like spheres contain 50% volume fraction of maghemite particles of approximately 10 nm 

mean radius (as measured by Dynamic Light Scattering), the surfactant being oleic acid. With 

spheres of this diameter the dominant relaxation mechanism could be due to either Brownian 

[4] or Néel relaxation [5]. However, the inner maghemite particles are extremely confined 

inside the spheres (almost close-packed) and therefore cannot experience Brownian 

relaxation. The only possible contribution of the inner, single domain, particles is thus their 

Néel relaxation, as has been previously confirmed[6]. 

     

                                                 
1 Invited lecture presented to TIM-05 conference, 24-25 November, 2005, Timisoara 

 10



 

      Single domain particles have a magnetic moment, mp , given by, mp=Ms v         

where Ms denotes the saturation magnetisation and v is the magnetic volume of the particle.  

    The Brownian relaxation time τΒ is given by [4]: τΒ = 4πr3η/ kΤ (2) 

where r  is the hydrodynamic radius of the particle, η  is the dynamic viscosity of the carrier 

liquid , k is Boltzmann’s constant and T is the absolute temperature.  

       In the case of the Néel relaxation mechanism, the magnetic moment may reverse 

direction within the particle by overcoming an energy barrier, which for uniaxial anisotropy, 

is given by Kv, where K is the anisotropy constant of the particle. The associated reversal or 

switching time τN  was estimated by Néel to be: 

                              τN = τo exp(σ)                                                              (3)  

τo being a damping time having an approximate value of 10-9 s and σ = Kv/kT.   

  When a sample contains a distribution of particle sizes, both  relaxation 

mechanisms contribute to the magnetisation. They do so with an effective relaxation time τ eff 

[7, 8], where 

   τeff = τN τB /( τN +τB ),                                                    (4) 

the mechanism with the shortest relaxation time being dominant.  

 

 2. Complex susceptibility 

 The frequency dependent susceptibility, χ(ω), may be written in terms of its real 

and imaginary components, where,  

χ(ω) = χ'(ω)-iχ’’(ω).                                                   (5) 

     Τhe theory developed by Debye [9] to account for the anomalous dielectric dispersion in 

dipolar fluids has been used [10-12] to account for the analogous case of magnetic fluids in 

the approximate range 10 Hz to 1 MHz . 

According to Debye's theory the complex susceptibility, χ(ω), has a frequency dependence as 

given by the approximate equation, 

χ(ω)   = χο /(1 + i ω τeff)= χο (1/(1 + ω2 τ2
 eff) -i  ω τ eff /(1 + ω2 τ2

 eff) ).              (6)                     

where the static susceptibility,  χο, is given by, 
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     χο = nm2/ 3kTμ0                                                                 ( 7) 

and 

τeff   = 1/ ωmax = 1/2πfmax,                                              (8) 

where  fmax is the frequency at which  χ" (ω)  is  a maximum, and n is the particle number 

density. 

Thus by determining fmax equation (8) enables one to obtain the mean particle or 

aggregate size of the sample. 

 As the measurement frequency increases beyond approximately 1 MHz, a transition 

from relaxation to resonance occurs. χ(ω), of an assembly of single domain particles can also 

be described in terms of its  parallel, χ||(ω) , and perpendicular,χ⊥ (ω), components, with 

[13] 

χ(ω) =
1
3

χ||(ω) + 2χ⊥ (ω)( )                                              (9) 

 χ ⊥(ω) can have a resonant character, whereby precession of the magnetic moment  occurs  

about an easy axis (i.e. the direction of the internal field HA ). 

       Under equilibrium conditions, the magnetic moment, mp , and the anisotropy  field, 

HA ,  of a particle are parallel and any deviation of the magnetic moment from the easy axis 

direction results in the precession of the magnetic moment  about this  axis. If the polar angle 

is small, the angular  resonant frequency,  ωres , is given by [14], 

ωres   = γ H
A                                                            (10)   

 H
A is the internal field for a particle with uniaxial anisotropy  and where the polar 

angle between the easy axis and the magnetic moment  is small, has magnitude, HA = 2K/ Ms, 

where K is the anisotropy constant in J/m3. 

From equation (10) it can be seen that the effect of applying an external polarising 

field, H, results in an increase in the resonant frequency ωres, which can be described 

approximately by 

     ωres = 2π fres =  γ(H + H A),           (11) 

where H A represents some mean value of the anisotropy field. Equation (11) is the equation 

of a straight line and from a plot of   fres against H, the value of AH  can be determined from 

the intercept of the plot with the x-axis . 
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 3. Experimental and Results 

Measurements were firstly performed on the base ferrofluid, Sample 1, which was a 

suspension of maghemite (γFe2O3) particles of mean particle radius 10 nm in octane, with 

oleic acid  as surfactant. This was realized by means of low frequency, 100 Hz to 0.1 MHz 

and  high frequency, 100 MHz to 6 GHz, complex magnetic susceptibility measurements. 

 Low-frequency measurements were made to determine whether or not the sample was 

aggregated and this was accomplished by means of the toroidal technique [15] in conjunction 

with a Hewlett Packard RF Bridge 4291A. The sample was found to be un-aggregated [6]. 

         The higher frequency range measurements were made by the short-circuit transmission 

line technique[16, 17]. The measurements were performed at different values of polarising 

field over the range 0 to 110 kA/m in order to determine AH and subsequently K ; the latter 

value being need to calculate τN in equation (3).  

Fig 1. shows a normalized plot χ'(ω) and χ''(ω), against frequency of the components 

of complex magnetic susceptibility, at zero  polarizing field.  For the unpolarised case fmax= 

1.15 G Hz and fres= 1.8 GHz and over the polarizing field range fmax and  fres were found to 

increase to 5.0 and 5.2 GHz respectively.   

           From equation (11), the field dependence of fres is given by 2πfres= γ(H+ AH ) and from 

a plot of fres against H,  AH , of the maghemite particles of Sample 1 was determined as being 

47.8 kA/m as can be seen from Fig 2. Using an Ms of 0.4 T, the anisotropy constant, K , is 

determined as K = Ms HA/2 ≈ 104 J/m3.  
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Fig 1. Plot of  χ’(ω) and χ’’(ω) against f(Hz) over the range 108 to 6 109 Hz, for Sample 1. 
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Fig 2. Plot of fres against polarizing field ,H, for Sample 1. 

 

        Complex susceptibility measurements, χs(ω) = χ’s(ω)- iχ’’s(ω),  were then performed 

on the suspension of magnetic spheres, Sample 2.  Fig 3. shows a plot of the static 

susceptibility χ0S against H obtained for both forward and reverse directions of polarisation, 

(χ0S  was taken to be equivalent to the values of χ’s(ω) obtained at 400Hz). In the case of 

increasing values of H, this figure shows an overall trend of increasing values of χ0S , up to a 

value of approximately 0.11; this is in contrast to what happens in the case of magnetic 

fluids[18] where the equivalent components decrease with increasing H. 

 Fig 3  also shows that with decreasing H,  χ0S, initially increases. This latter increase 

continues until, at an approximate value of H =5,000 A/m, there is a slight leveling off 

followed by a decrease to a value of 0.11 for H=0. This is thus a manifestation of a hysterises 

effect which was the object of this work and unlike that reported in [6], in this case the 

presence of a large remenence at H=0, is indicated.  

Fig 4. shows the corresponding variation in the absorption peak, fmax, with the cyclic 

variation in H. The  absorption peak is first detected at a frequency of fmax =1.26 kHz, for H= 

0.9  kA/m, and increases to fmax=2.15 kHz for H= 13.6 kA/m. Then, with a reversal of H, fmax 

decreases, in the manner  shown in Fig 4. 
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Fig 3. Plot of χ0S  against H, in a forward and reverse direction , for Sample 2. 
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Fig 4. Plot of fmax against H, in a forward and reverse direction, for Sample 2. 

 

 4. Discussion 

The first issue requiring discussion is why the complex components, χ's(ω) and 

χ''s(ω), increase with increasing polarising field. 

 From (6), it can be seen that both χ's(ω) and χ''s(ω), are directly proportional to χ0S,                       

and since χ0S = nmps2/3kTμο , all parameters are fixed except for mps, the effective magnetic 

moment of the spheres. Thus an increase in mps could be due to the fact that the individual 
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spheres and magnetic moments in the spheres are becoming more aligned with increasing H. 

So from (6)  both χ's(ω) and χ''s(ω) should increase with increasing H, as they indeed do. 

Also, a factor which influences the variation in χ's(ω) and χ''s(ω) with Η,  is the customary 

diminution of χ(ω) due to the Langevin profile of the magnetization and this may be a 

contributing factor, for example, in the flattening of the χ0S against Η  profile at higher fields. 
Fig 3. also shows how χ0S initially increases with decreasing H until an approximate value of 

H=5,000 A/m is reached; it then decreases rapidly with further decrease in H, to a value of χ0S  

= 0.11 at H=0. This level of remanence corresponds to the equilibrium level attained in the 

fluid when H was increased up to 13.6 kA/m on the forward cycle of polarisiation. 
At this point in time we are unable to fully explain this behaviour and it is currently 

under further investigation. However we note that the spherical droplets are assumed to 

remain spherical under the influence of the polarizing field. If this were not so it would have 

consequences form the de-mag factor of the droplets and hence the magnitude of the static 

susceptibility, χ0S . 

The second issue to be considered is that of the determination of the relevant 

relaxation mechanism of the suspension of magnetic beads. To do this we shall estimate the 

order of magnitude of the three possible relaxation frequencies. 

Experimentally, we have: 

τ eff   = 1/ ωmax = 1/2πfmax 

In the case of Brownian relaxation (from (2)) there comes 

1/2πfmax = 4πηr3/ kΤ , giving, fmax= kΤ/8π2r3η 

So if we assume negligible change in viscosity, η, the increase in fmax over the 

polarising field range, corresponds to a decrease in the effective hydrodynamic radius, r, of 

the spheres. 

In the case of the magnetic spheres in a water based carrier, using a radius of 100 nm, 

at room temperature the Brownian relaxation time is given by: 

τB =  4πηr3/ kΤ = 4 π10−2710610−3/4.10−21 ≈ 3 10−3 s 

resulting in fmax=1/6π10-3 ≈ 50 Hz. This frequency is well outside the frequency  range where 

the loss-peaks are detected. 

 In the case of Néel relaxation, (from (3))  

τN= τoexp(σ) with τo≈ 10-9s 
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Thus for spheres of 100nm radius, with K≈104 J/m3 (as determined from our high 

frequency measurements), we get a value of σ ≈ 1 104 which corresponds to an almost 

inifinite relaxation time that is to say to an undetectable (almost zero) frequency. 

However, for a 10 nm particle, with K≈104 J/m3, we get a value of σ = 10.5 and  τN 

=3.6 10-5 s. The corresponding fmax=1/(2 π τN) ≈ 4 kHz, which is in line with the measured 

loss-peaks (between 1 and 2 kHz). Thus from the above calculations of the Néel and 

Brownian relaxation times it appears that the loss-peaks detected have their origins in the Néel 

relaxation of the inner maghemite particles. This confirms previous published data[  ], where, 

to conclusively confirm that Néel was the dominant relaxation mechanism, the susceptibility 

measurements were repeated with the viscosity of the carrier being increased 1000 times (by 

changing the carrier from water to glycerine). The result of this exercise showed that the 

frequency, fmax, of the loss peaks were unchanged. Since, from equation (2), τB is directly 

proportional to the viscosity, η, and from equation (3) τN is independent of η, this result thus 

confirms that Néel relaxation of the inner particles is responsible for the loss-peaks. 

 

 5. Conclusion 

 In this work, measurements of the frequency dependent, complex susceptibility,  

χ s (ω) = χ's(ω)-iχ’’s(ω), over the frequency range 200 Hz to1 MHz, of a magnetic colloid 

consisting of spherical beads of 200 nm diameter, containing maghemite (γFe203) 

nanoparticles, have been presented. From a plot of the static susceptibility, χ0S, against 

polarizing field, H, in a forward and then a reverse direction, a hysteresis effect together is 

demonstrated. The relaxation properties of the colloid are also investigated and it is confirmed 

that the absorption peak of  the  χ’’s(ω) component, over the measured frequency range, is due 

to Néel relaxation of the inner maghemite particles. 
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